MSU Nanotechnology Education and Research Center International School "Computer simulation of advanced materials", 16–21 July 2012

ATOMISTIC SIMULATIONS ON SUPERCOMPUTERS USING OPEN SOURCE CODES Igor Morozov

Joint Institute for High Temperatures of Russian Academy of Sciences

July 19, 2012

Contents

1. Atomistic simulations in material science:

- Molecular Dynamics (MD)
- Monte-Carlo (MC)
- 2. Choice of the simulation software: open source vs. commercial

3. Challenges for atomistic simulation codes:

- Interaction models
- Parallel scaling
- Using GPUs
- Atomistic simulations on the Grid

First papers on MD simulations

Phase Transition for a Hard Sphere System

B. J. ALDER AND T. E. WAINWRIGHT University of California Radiation Laboratory, Livermore, California (Received August 12, 1957)

A CALC has be laxations aco nomena. The number of sij classical equa ticles by mean details as the having squar described.^{1,2} equilibrium state of hard Monte Carlo

The calcul rectangular 1 Initially, the velocities of 6 tions. After a the Maxwellthe pressure means of the of the mompressure has a bution functi is within the A 32-particle system in a cube and initially in a facecentered cubic lattice proceeded at about 300 collisions an hour on the UNIVAC. For comparison a 96-particle system in a rectangular box and initially in a hexagonal arrangement has been calculated, however only at high

ssures can be ong runs were ordingly the es, an hour is s of 108, 256, e handled; in pectively, can particles are istics.

1 of the acles is for the greement was results. The ime of close ended Monte se three systhe pressure n interesting al mechanics

shows two overlapping exist in two tres. As the o jump sudof the posi-

The record numbers of particles taken for MD simulations in different years

1964	1.000
1984	200.000
1990	1.000.000
1994	100.000.000
1997	1.213.857.792
1997	1.399.440.000
1999	5.180.116.000
2000	8.500.000.000
2003	19.000.416.964
2005	160.000.000.000
2006	320.000.000.000
2008	1.000.000.000.000

Rahman Abraham Swope, Anderson Beazley, Lomdahl Stadler Müller Roth Vashishta Kadau, Germann, Lomdahl Kadau, Germann, Lomdahl Kadau, Germann, Lomdahl Kadau, Germann

4 µm

Years, Flop/s and the numbers of cores

CDC 6600 10 MHz 1 CPUs **Mflops** 1964 г. 8 CPUs Gflops 1985 г. Cray 2 125 MHz Tflops 1997 г. **ASCI Red** 200 MHz 9152 CPUs 3,2 GHz 122400 Cores Pflops 2008 г. Roadrunner $10^8 - 10^9$ ≈ 2018 г. Eflops

Voevodin V.V., XII International supercomputing conference «Scientific Service in the Internet: Supercomputing Centers and Challenges», September 21, 2010.

The record numbers of particles taken for MD simulations in different years

1964	1.000
1984	200.000
1990	1.000.000
1994	100.000.000
1997	1.213.857.792
1997	1.399.440.000
1999	5.180.116.000
2000	8.500.000.000
2003	19.000.416.964
2005	160.000.000.000
2006	320.000.000.000
2008	1.000.000.000.000

Rahman Abraham Swope, Anderson Beazley, Lomdahl Stadler Müller Roth Vashishta Kadau, Germann, Lomdahl Kadau, Germann, Lomdahl Kadau, Germann, Lomdahl Kadau, Germann

4 µm

Multiscale approach in material sciences

Original at Berkeley Lab We site: http://www.lbl.gov/CS/html/exascale4energy/nuclear.html

Time Scale

Choice of the simulation code

Open source

- Free of charge ③
- Allows modifications
- Implements cutting edge technologies
- Tested by many users over the internet
- Supported by a community of developers

Proprietary

- > Reliable
- Easier to install and configure
- Professional support
- Usually has better support for different platforms

Key features of atomistic simulation codes

Basic simulation algorithms

MD, MC, energy minimization, thermostats, boundary conditions, neighbor lists, optimized electrostatics

> Particle interaction models

Force fields for pair and many-body potentials, customization

Trajectory analysis tools

Binary trajectory output, plausible modules for calculation of thermodynamics, correlation functions, etc. including averaging

Parameter input and variation

Parameter input languages, batch runs, workflows

Parallel execution

Parallel efficiency on modern supercomputing clusters

> Optimization for a special hardware, GPU

Visualization

Key features of atomistic simulation codes

Basic simulation algorithms

MD, MC, energy minimization, thermostats, boundary conditions, neighbor lists, optimized electrostatics

- Particle interaction models Force fields for pair and many-body potentials, customization
- Trajectory analysis tools Binary trajectory output, plausible modules for calculation of thermodynamics, correlation functions, etc. including averaging
- Parameter input and variation Parameter input languages, batch runs, workflows
- Parallel execution
 Parallel efficiency on modern supercomputing clusters
 Optimization for a special bandware OPU
- Optimization for a special hardware, GPU
- Visualization

Open source packages for atomistic simulations

Package name	Language	GPU	Parallel	Min	MD	MC	Comment		
Adun	C			+	+		User specified force field (FFML), QM/MM		
-	2-3-1		2 - 3				(EVB)		
DL_POLY*	Fortran, C++, Java				+		General purpose MD, HDF5 output, Java GUI		
GROMACS	С	+	MPI		+		High performance MD, designed for biological systems and polymers		
HALMD	C++	++			+		High-precision MD for the large-scale simulation of simple and complex liquids, HDF5 output		
HOOMD- blue	C++, Python	++	100	+	+		General-purpose MD highly optimized for GPUs		
LAMMPS	C++	+	MPI	+	+	+	High parallel scalability, wide range of potentials and analysis tools		
MDynaMix	Fortran		MPI		+	1	Parallel MD for AMBER force field		
MOIL	Fortran, Tcl		MPI	+	+		Basic algorithms and force fields, Replica exchange, coarse-grained models, Tcl GUI		
NAMD/VMD	C++	+	MPI				High parallel scalability, designed for biomolecular, visualization (VMD)		
RedMD	C/C++			+	+	+	Coarse-grained models of proteins and nucleic acids		
TINKER	Fortran		OpenMP	+	+	+	Simple MD, QM/MM, molecular design		
XMD	С		pthreads	+	+	+	MD for metals and ceramics		

SIMULATION ALGORITHMS

Molecular Dynamics: Trajectory Calculation

Monte-Carlo: Metropolis algorithm

Equations of motion in Classical MD

Consider a system of *N* particles with positions $\vec{R} = \{\vec{r_1}, ..., \vec{r_N}\}$ and velocities $\vec{V} = \{\vec{v_1}, ..., \vec{v_N}\}$.

The Newton's equations of motion:

 $\begin{cases} \vec{r}_k "(t) = \frac{1}{m_k} \vec{F}_k(t, \vec{r}_1, ..., \vec{r}_N), & k = \overline{1, N}, \\ \vec{R}(0) = \vec{R}_0, & \vec{V}(0) = \vec{V}_0. \end{cases}$

Force acting of *k*-th particle: $\vec{F}_k(\vec{R}) = -\frac{\partial U(\vec{R})}{\partial \vec{r}_k}$

General form of the interaction potential:

$$U(\vec{R}) = \sum_{k} U^{ext}(t, \vec{v}_{k}, \vec{r}_{k}) + \sum_{i < j} U(\vec{r}_{i}, \vec{r}_{j}) + \sum_{i < j < k} \Phi(\vec{r}_{i}, \vec{r}_{j}, \vec{r}_{k}) + \dots$$

Particular case of the pairwise potential:

$$U(\vec{r}_{i},\vec{r}_{j}) = U(|\vec{r}_{i}-\vec{r}_{j}|) = U(r_{ij}) \qquad \vec{F}_{k}^{pair} = -\sum_{j} \frac{\vec{r}_{kj}}{r_{kj}} \frac{\partial U(r_{kj})}{\partial r_{kj}} = \sum_{j} \frac{\vec{r}_{kj}}{r_{kj}} f(r_{kj})$$

INTERACTION MODELS

Interaction models and simulation techniques

- Particle-in-cell, hydrodynamic codes
- Coarse-grained, discontinuous molecular dynamics
- Simple pairwise potentials for atoms or molecules with fixed atomic bonds
- Complicated many-body potentials for atoms (EAM, MEAM, ReaxFF, Tersoff, etc.)
- Classical MD for electrons and ions
- Wave Packet MD, Electron Force Field
- QM/MM hybrid models
- Quantum MD (Car-Parinello, DFT, TD-DFT)
- Numerical solution of the Schrödinger equation

Atomistic simulations

< 1nm

 $> 1 \mu m$

System

size

Interaction models and simulation techniques

- Particle-in-cell, hydrodynamic codes
- Coarse-grained, discontinuous molecular dynamics
- Simple pairwise potentials for atoms or molecules with fixed atomic bonds
- Complicated many-body potentials for atoms (EAM, MEAM, ReaxFF, Tersoff, etc.)
- Classical MD for electrons and ions
- Wave Packet MD, Electron Force Field
- QM/MM hybrid models
- Quantum MD (Car-Parinello, DFT, TD-DFT)
- Numerical solution of the Schrödinger equation

Atomistic simulations

< 1nm

 $> 1 \mu m$

System

size

Force field for interaction of atoms in a molecule

Source: Pingwen Zhang, Molecular Dynamics Simulations (http://math.xtu.edu.cn/myphp/math/image/MD.ppt)

Classical Molecular Models of Water

- Guillot B (2002) What we have learnt during three decades of computer simulations on water. Journal of Molecular Liquids 101, 219-260.
- Finney JL (2004) Water? What's so special about it? Phil. Trans. R. Soc. Lond. B 359, 1145-1165.

Department of

Geological Sciences

EPARTMENT OF CHEMISTRY

MICHIGAN STAT

UNI

Acronym (date)	Reference	Status	Туре	Sites	$\mu_g(D)$	$\mu_i(D)$
BF (1933) 7		empirical	R	4	2.0	2.0
R (1951)	21	empirical	R	5	1.84	1.84
BNS (1971)	22	empirical	R	5	2.17	2.17
ST2 (1973,1993)	23	empirical	R	5	2.35	2.35
CF (1975,1978,1995) 24	empirical	F	3	1.86	1.98
MCY (1976)	25	ab initio	R	4	2.19	2.19
DCF (1978, 1980, 199	3) 26	empirical	F.D.P	3	1.855	
PE (1979)	27	empirical	P	1	1.855	2.50
SPC (1981)	14	empirical	R	3	2.27	2.27
TIP3P (1981 1983)	15	empirical	R	3	2.35	2.35
RWK (1982)	28	empirical	F	4	1.85	1.89
TIP4P (1983)	15	empirical	R	4	2.18	2.18
RIH (1983)	20	empirical	F	3	1.87	1.99
SPC/E (1985)	30	empirical	F	3	2 27	2 42
MCVI (1985)	21	ab initio	F	4	2 10	2.26
SDC/E (1960)	32	apprintical	P	3	2.15	2.20
SPC/E (1987)	34	empirical	P	2	2.55	2.55
WK (1989)	35	empirical	R. D.	-	1.00	2.00
SPCP (1989)	34	empirical	P D	3	1.00	2.90
CKL (1990)	33	empirical	P,P	4	1.88	2.20
MCHO (1990)	30	ab initio	P	0	2.12	=3.0
NCC (1990)	37	ab initio	P	0	1.85	2.80
NEMO (1990,1995)	38	ab initio	P	5	2.04	2.89
PTIP4P (1991)	39	empirical	Р	4	1.85	2.80
SPC/FP (1991)	40	empirical	F,P	3	1.85	2.44
PSRWK (1991)	41	empirical	Р	4	1.88	2.63
KJ (1992)	42	empirical	Р	4	1.85	7
NCCvib (1992)	37b	ab initio	F,P	6	1.85	3.11
ASP-W (1992,1998)	43	ab initio	P	3	1.85	2.90
RPOL (1992)	44	empirical	Р	3	2.02	2.62
CPMD (1993,1999)	45	DFT+CP	F,D,P	nucl.+el.	1.87	2.95
PPC (1994)	46	ab initio	Р	4	2.14	2.51
SPC/FQ (1994)	47	empirical	Р	3	1.85	2.83
TIP4P/FQ (1994)	47	empirical	Р	4	1.85	2.62
KKY (1994)	48	empirical	F,D	3	2.38	2.21
SOPM (1995)	49	valence bond	P	4	1.85	2.62
SCPDP (1996)	50	empirical	P	4	1.85	2.87
TAB/10D (1998)	51	SCF+MD	P	5	1.85	2.65
NSPCE (1998)	52	empirical	R	3	2.18	2.18
NCF (1998)	53	empirical	F	3	1.85	1.90
MCDHO (2000)	54	ab initio	F. P	4	1.85	3.01
TIP5P (2000)	55	empirical	R	5	2.29	2.29
SPC/HW (2001)	56	empirical	R	3	2.41	2.41
DEC (2001)	57	empirical	R	3	1.85	1.85
SWELEX (2001)	58	empirical	P	4	1.85	2.59
POLARELEY (2001)	1) 50	valence bond	FP	3	1.85	2.55
POLS (2001)	60	sh initio	P	5	1.85	2 71
1010120017	00	ao minuo		-	1.00	Mark P. A.

Andrey G. Kalinichev, Seminar talk, JIHT RAS, Moscow, Russia, October 1, 2009

The Structure of H₂O Molecule and Classical Intermolecular Potentials

$$U = \Sigma \Sigma (A_{ij}/r_{ij}^{12} - B_{ij}/r_{ij}^{6} + q_i q_j/\varepsilon_0 r_{ij}) +$$

Short-range repulsion Van der Waals Coulombic

+
$$\Sigma \frac{1}{2} k_{b}(r_{ij} - r_{0})^{2} + \Sigma \frac{1}{2} k_{\theta}(\theta_{ij} - \theta_{0})^{2}$$

Department of

Geological Sciences

bond stretching

EPARTMENT OF CHEMISTRY

bond bending

MICHIGAN STAT

H N

- Ab-initio quantum mechanical
- Empirical and semi-empirical
- Rigid vs flexible
- Point polarizability
- "Charges on springs" models
- Core-shell models

Andrey G. Kalinichev, Seminar talk, JIHT RAS, Moscow, Russia, October 1, 2009

Interaction models and simulation techniques

- Particle-in-cell, hydrodynamic codes
- Coarse-grained, discontinuous molecular dynamics
- Simple pairwise potentials for atoms or molecules with fixed atomic bonds
- Complicated many-body potentials for atoms (Tersoff, EAM, MEAM, ReaxFF, etc.)
- Classical MD for electrons and ions
- Wave Packet MD, Electron Force Field
- QM/MM hybrid models
- Quantum MD (Car-Parinello, DFT, TD-DFT)
- Numerical solution of the Schrödinger equation

Atomistic simulations

< 1nm

 $> 1 \mu m$

System

size

Many-body Tersoff potential

Many-body Tersoff potential

Many-body Tersoff potential

Embedded Atom Method - EAM

Electron density (transfer function) $U = \sum_{i} F_{i}\left(\sum_{j \neq i} \rho_{j}\left(r_{ij}\right)\right) + \sum_{i < j} \Phi_{ij}\left(r_{ij}\right) \neq \sum_{i} \sum_{j \neq i} U(\vec{r}_{ij})$ ρ(*r*) **Embedding function** Pair potential $\Phi(r_{ij})$

Embedded Atom Method - EAM

Atomistic model of spallation process at high rate shock^{*}

Model parameters:

- 1. T = 300 K
- 2. Number of Cu atoms 112 000
- 3. Impactor / target mass ratio 1/6
- 4. Initial defect number density 0.05

^{*} A. Yu. Kuksin, G.E.Norman, V. V. Stegailov, and A. V. Yanilkir Thermophysics, 2009, Vol. 18, No. 3, pp. 197–226.

Shock wave in AI crystal with Cu precipitates

200x80x80 N = 5 million atoms $V_p = 1800 \text{ m/s}$ T=300K

^{*} A. Yu. Kuksin, G.E.Norman, V. V. Stegailov, and A. V. Yanilkin // Journal of Engineering Thermophysics, 2009, Vol. 18, No. 3, pp. 197–226.

The ReaxFF Interatomic Potential

Developed by Adri van Duin:

van Duin ACT, Dasgupta S, Lorant F, Goddard WA, J. Phys. Chem A. 105 9396 (2001) (183 citations up to Feb 2010)

- Describes bond formation and charge transfer in condensed phases, especially organics
- Bonded interactions generated on-the-fly, based on distance-dependent bondorder functions.
- Bond-orders adjusted to compensate for atomic over/under-coordination
- Atom charges computed using electro-negativity equalization i.e. minimizing quadratic function in *N* charges (Coulombic plus ionization energies)

 $E_{\textit{System}} = E_{\textit{bond}} + E_{\textit{over/under}} + E_{\textit{lp}} + E_{\textit{pen}} + E_{\textit{coa}} + E_{\textit{hb}} + E_{\textit{tors}} + E_{\textit{conj}} + E_{\textit{val}} + E_{\textit{vdW}} + E_{\textit{Coul}}$

= E(bond-order) + E(non-bond) + E(charge equilibration)

Source: http://lammps.sandia.gov/workshops/Feb10/Aidan_Thompson/ReaxFF_LAMMPS_2010.pdf

The ReaxFF Interatomic Potential

Butene oxidation, characteristic configuration obtained after 1.5 ns info@scienomics.com www.scienomics.com

Interaction models and simulation techniques

- Particle-in-cell, hydrodynamic codes
- Coarse-grained, discontinuous molecular dynamics
- Simple pairwise potentials for atoms or molecules with fixed atomic bonds
- Complicated many-body potentials for atoms (EAM, MEAM, ReaxFF, Tersoff, etc.)
- Classical MD for electrons and ions
- Wave Packet MD, Electron Force Field
- QM/MM hybrid models
- Quantum MD (Car-Parinello, DFT, TD-DFT)
- Numerical solution of the Schrödinger equation

Atomistic simulations

< 1nm

 $> 1 \mu m$

System

size

Density-Temperature Diagram

Breaking into the atom

Source: Alexey Shaitan, International School "Computer simulation of advanced materials", Moscow, Russia, July 16–21, 2012

MD simulations of ionized sodium clusters

Ionization and cluster expansion «Coulomb explosion»

□ In the initial state the ions are located in the nodes of Na55 icosahedral crystal. Electrons are on top of ions.

□ Ion-electron mass ratio is 41910

Erf-like electron ion potential is used with $U_{min} = -5.1eV$

Typical times of: cluster expansion > 100fs electron oscillations < 1fs</p>

MD simulations of ionized sodium clusters

Ionization and cluster expansion «Coulomb explosion»

□ Typical times of: cluster expansion > 100fs electron oscillations < 1fs

Visualization of particle motion in MD cell

t = 0

Nbound = 0

- electron
- 🗕 ion
- o bound electron

– bound ion

An electron is marked as bound if it makes at least one complete revolution around an ion.

```
N = 128

\Gamma = 1.28

M/m = 10
```

Models for electron-ion interaction potentials

 $F(x) = 1 - \exp(-x^2) + \sqrt{\pi x} (1 - \operatorname{erf}(x)) \qquad \Lambda_{ie} = \hbar / \sqrt{2mkT}$

Models for electron-ion interaction potentials

Interaction models and simulation techniques

- Particle-in-cell, hydrodynamic codes
- Coarse-grained, discontinuous molecular dynamics
- Simple pairwise potentials for atoms or molecules with fixed atomic bonds
- Complicated many-body potentials for atoms (EAM, MEAM, ReaxFF, Tersoff, etc.)
- Classical MD for electrons and ions
- > Wave Packet MD, Electron Force Field
- QM/MM hybrid models
- Quantum MD (Car-Parinello, DFT, TD-DFT)
- Numerical solution of the Schrödinger equation

Atomistic simulations

< 1nm

 $> 1 \mu m$

System

size

Wave Packet Molecular Dynamics

Gaussian wave packet (WP) for a single particle:

$$\varphi(\mathbf{x},t) = \left(\frac{3}{2\pi\gamma^2}\right)^{3/4} \exp\left\{-\left(\frac{3}{4\gamma^2} - \frac{ip_{\gamma}}{2\hbar\gamma}\right)(\mathbf{x}-\mathbf{r})^2 + \frac{i}{\hbar}\mathbf{p}\cdot(\mathbf{x}-\mathbf{r})\right\}$$

"Physical" parameters (8 real numbers per particle):(\mathbf{r}, \mathbf{p})particle coordinate and momentum (3D vectors) γ width of the packet ($\gamma > 0$) p_{γ} "momentum" of the width

Wave Packet Molecular Dynamics

Hamiltonian

$$\hat{H} = \hat{K}_{e} + \hat{V}_{ei} + \hat{V}_{ee} + \hat{H}_{ext} = -\sum_{k} \frac{\hbar^{2}}{2m} \Delta_{k} - \sum_{k,i} \frac{eq_{i}}{|\hat{\mathbf{x}}_{k} - \mathbf{R}_{i}|} + \sum_{k < m} \frac{e^{2}}{|\hat{\mathbf{x}}_{k} - \hat{\mathbf{x}}_{m}|} + \hat{H}_{ext}$$

Many-electron wave function

 $\Psi({\mathbf{x}_k}, t) = \prod \varphi(\mathbf{x}_k, t)$ (Hartree approximation)

Total energy

$$H = \left\langle \Psi \left| \hat{H} \right| \Psi \right\rangle = \sum_{k} \left(\frac{\mathbf{p}_{k}^{2}}{2m} + \frac{\mathbf{p}_{\gamma_{k}}^{2}}{2m} \right) + \sum_{k} \frac{9\hbar^{2}}{8m\gamma_{k}^{2}} + \sum_{k < l} \frac{e_{k}e_{l}}{r_{kl}} \operatorname{erf}\left(\frac{r_{kl}}{\sqrt{2(\gamma_{k}^{2} + \gamma_{l}^{2})/3}} \right) + H_{e}$$

Norm-matrix

$$N_{\alpha\beta} = \frac{\partial}{\partial q_{\alpha}^{*} \partial q_{\beta}} \ln \left\langle \Psi(\mathbf{q}^{*}) \middle| \Psi(\mathbf{q}) \right\rangle$$

Equations of motion
$$\sum_{\alpha} N_{\alpha\beta} \frac{dq_{\alpha}}{dt} = \frac{\partial H}{\partial q_{\beta}},$$

Equations of motion

$$\mathbf{N} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\dot{\mathbf{r}}_{k}(t) = \frac{\partial H}{\partial \mathbf{p}_{k}}, \quad \dot{\mathbf{p}}_{k}(t) = -\frac{\partial H}{\partial \mathbf{r}_{k}}, \quad \dot{\gamma}_{k}(t) = \frac{\partial H}{\partial p_{\gamma_{k}}}, \quad \dot{p}_{\gamma_{k}}(t) = -\frac{\partial H}{\partial \gamma_{k}}$$

Ground state of simple atoms represented by multiple Gaussian wave packets

Hydrogen

Helium

Excited states of Hydrogen represented by multiple Gaussian wave packets

 $N_{\rm wp} = 5, T = 200a.u., E_0 = 0.005a.u.$

Ionization of H(1s) atom by a laser pulse*

* Comparison with *J.P. Hansen, J. Lu, L.B. Madsen, H.M. Nilsen* // Phys. Rev. A, 2001, V. 64, P. 033418.

Electron force field approach^{*}

* J.T. Su, W.A. Goddard III, Excited Electron Dynamics Modeling ofWarm Dense Matter, Phys. Rev. Lett., 2007, v. 99, p. 185003.

PARALLEL EXECUTION

LLNL Sequoia Supercomputer

Top-500: System Architecture

Domain Decomposition

Principle: - Distribute the spatial domain most uniform among processors

- Particles can move across different processors
- Only local communications required (interacting particles are on the local and neighbored processors)

small number of neighbor cells: 2 neighbors

small surface area: 8 / 26 neighbors (2-/3-dim)

Domain decomposition

Speedup depending on the number of CPU cores*

Simulations were performed at the MVS-100K cluster of JSCC RAS using LAMMPS

^{*} A. Yu. Kuksin, G.E.Norman, V. V. Stegailov, and A. V. Yanilkin // Journal of Engineering Thermophysics, 2009, Vol. 18, No. 3, pp. 197–226.

^{*} A. Yu. Kuksin, G.E.Norman, V. V. Stegailov, and A. V. Yanilkin // Journal of Engineering Thermophysics, 2009, Vol. 18, No. 3, pp. 197–226.

NAMD: weak scaling for different clusters

92,224 atoms, 12A cutoff + PME every 4 steps, periodic

NAMD 2.8 ApoA1 Benchmark (92K atoms, PME)

Source: http://www.ks.uiuc.edu/Research/namd/performance.html

ACCELERATION USING GPUs

Top 500 Supercomputers (June 2012)*

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom / 2011 IBM	1572864	16324.75	20132.66	7890.0
2	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect / 2011 Fujitsu	705024	10510.00	11280.38	12659.9
3	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	786432	8162.38	10066.33	3945.0
4	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR / 2012 IBM	147456	2897.00	3185.05	3422.7
5	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 / 2010 NUDT	186368	2566.00	4701.00	4040.0
6	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XK6, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA 2090 / 2009 Cray Inc.	298592	1941.00	2627.61	5142.0
7	CINECA Italy	Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	163840	1725. <mark>4</mark> 9	2097. <mark>1</mark> 5	821.9
8	Forschungszentrum Juelich (FZJ) Germany	JuQUEEN - BlueGene/Q, Power BQC 16C 1.60GHz, Custom / 2012 IBM	131072	1380.39	1677.72	657.5
9	CEA/TGCC-GENCI France	Curie thin nodes - Bullx B510, Xeon E5-2680 8C 2.700GHz, Infiniband QDR / 2012 Bull	77184	<mark>1359.00</mark>	1667. 1 7	2251.0
10	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade System, Xeon X5650 6C 2.66GHz, Infiniband QDR, NVIDIA 2050 / 2010 Dawning	120640	1271.00	2984.30	2580.0

http://www.top500.org

Accelerators in supercomputers

Источник: Top500.org

60 «Научный сервис в сети интернет: экзафлопсное будущее», 14-24 сентября 2011 Бирогаtion

кдинародная суперкомпьютерная конференция

GPU vs CPU: Performance, Cost, Energy Saving*

CPU 1U Server: 2x Intel Xeon X5550 (Nehalem) 2.66 GHz, 48 GB memory, \$7K, 0.55 kw GPU-CPU 1U Server: 2x Tesla C2050 + 2x Intel Xeon X5550, 48 GB memory, \$11K, 1.0 kw

Anton Dzhoraev, The 1st Research and Practice Conference "High Performance Computing on GPUs", Perm, Russia, May 21-25, 2012

Comparison of CPU and GPU architectures*

*Original location: http://www.chepr.ru/index.php?rasd=info&id=75

GPU-enabled MD simulation packages

LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator

Sandia National Lab, USA http://lammps.sandia.gov, Free.

Highly Optimized Object Oriented Molecular Dynamics

Developers: J.A. Anderson, A. Travesset Iowa State University, Ames, IA 50011, USA http://codeblue.umich.edu/hoomd-blue/, Free.

NAMD/VMD

University of Illinois at Urbana-Champaign (UIUC), USA

ACE-MD

http://www.ks.uiuc.edu/Research/namd, Free.

HALMD

Time of a single step execution (the lower the better) for different number of particles

Benchmarks for Lennard-Jones liquid: $\rho = 0.84, T=0.64,$ $r_{cut} = 3, r_{skin} = 0.8$

MD simulation packages: LAMMPS (18 Feb 2011) HOOMD ver. 0.9.1

Compilers: icc 11.0 20090318 CUDA 3.2, V0.2.1221

Ratio between GPU and CPU performances depending on the number of particles

Time of a single step execution for different number of CPU/GPU cores of the hybrid cluster

 $N_{part} = 16 \cdot 10^3$ Benchmarks for LJ liquid: $\rho = 0.19, T=1.0,$ $r_{cut} = 3, r_{skin} = 0.8$

MD simulation packages: LAMMPS (5 Apr 2011) Compilers: icc 11.1 20100414 CUDA 3.2, V0.2.1221

Cluster: K100 (KIAM RAS)

Time of a single step execution for different number of CPU/GPU cores of the hybrid cluster

 $\rho = 0.19, T=1.0,$

 $r_{cut} = 3, r_{skin} = 0.8$

MD simulation packages: LAMMPS (5 Apr 2011) Compilers:

icc 11.1 20100414 CUDA 3.2, V0.2.1221

Cluster: K100 (KIAM RAS)

Ratio between GPU and CPU performances depending on the number of particles

RIKEN "Protein Explorer": special purpose system for molecular dynamics

1 unit = Dual-core Intel Xeon CPU + 24 MD-GRAPE chips

201 units achieve 1 PFlops for MD

ATOMISTIC SIMULATIONS ON THE GRID

Requirements to Grid middleware

MD (or MC) numerical experiment usually goes through a number of stages:

Low level:

- prepare system in the initial state
- propagate it through the chain of other states
- obtain system properties from the MD trajectory

High level:

- average over a set of initial states
- perform parameter sweep
- perform optimal parameter search *etc*

Scenarios and workflow graphs

Open source GridMD library

Grid

- GridMD is a C++ class library intended for constructing simulation applications and running them in distributed environments
- Single application for serial (debug) and distributed execution
- Automatic workflow generation from GridMD function calls inside the main application
- Component architecture, easy interfacing to other MD packages.
- All required components for MD experiment: boundary conditions, thermodynamic ensembles, etc.)
- Support for various job managers
- Cross-platform design, compiled for Linux and Windows
- Open source code (available at <u>http://gridmd.sourceforge.net</u>)

Submission of the tasks to parallel and distributed systems

Submission of the tasks to parallel and distributed systems

Submission of the tasks to parallel and distributed systems

Submission of the tasks to parallel and distributed systems

Open source packages for atomistic simulations

Package name	Language	GPU	Parallel	Min	MD	MC	Comment
Adun	C			+	+		User specified force field (FFML), QM/MM
-	2-3-3		2 - 3				(EVB)
DL_POLY*	Fortran, C++, Java				+		General purpose MD, HDF5 output, Java GUI
GROMACS	С	+	MPI		+		High performance MD, designed for biological systems and polymers
HALMD	C++	++			+		High-precision MD for the large-scale simulation of simple and complex liquids, HDF5 output
HOOMD- blue	C++, Python	++	100	+	+		General-purpose MD highly optimized for GPUs
LAMMPS	C++	+	MPI	+	+	+	High parallel scalability, wide range of potentials and analysis tools
MDynaMix	Fortran		MPI		+	1	Parallel MD for AMBER force field
MOIL	Fortran, Tcl		MPI	+	+		Basic algorithms and force fields, Replica exchange, coarse-grained models, Tcl GUI
NAMD/VMD	C++	+	MPI				High parallel scalability, designed for biomolecular, visualization (VMD)
RedMD	C/C++			+	+	+	Coarse-grained models of proteins and nucleic acids
TINKER	Fortran		OpenMP	+	+	+	Simple MD, QM/MM, molecular design
XMD	С		pthreads	+	+	+	MD for metals and ceramics

Benchmarks for bimolecular simulations

ns/day

CONCLUSIONS

Open source projects are particularly suitable for scientific research because they are customizable, extensible, implement a variety of ionization models and optimization techniques.

Quasiclassical atomistic simulations of chemical reactions, ionization/recombination processes and electron-ion relaxation are still a challenge.

GPUs can highly accelerate MD simulations in particular for long-ranged interactions.

Averaging and parameter sweep lead allow to run simulations on Grid and Cloud environments.

Our web site: http://www.ihed.ras.ru/norman