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Photovoltaic energy conversion 
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• Photovoltaic energy conversion requires: 
– photon absorption across an energy gap 
– separation of photogenerated charges 
– asymmetric contacts to an external circuit 

• Usually these functions are achieved with a Si p-n junction 
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Alternative approach: Organic photovoltaic materials 
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Rapid growth in production 
capacity possible 
Projected cost  per Wp <<  Si PV 

Solution processable Molecular semiconductors 

Manufacture by 
printing or coating 

Lightweight, flexible solar cell device 
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polymer 

1 nm 

Organic photovoltaic materials 
 

• Electronic states are localised:  
– Photo-excited states are localised 
– Charges are localised  low mobility µ 

 
 

 

conjugated molecule  
• Electronic states are disordered:  

– Charged states vary in energy 
– Dynamics are dispersive 

 
 



EB ~ 0.01 eV 
Spontaneous charge pair generation 
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EB ~ 0. 1- 0.5 eV 
Charges hard to dissociate 
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Inorganic semiconductor 
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Molecular semiconductor 

Charge separation in molecular materials 

Cannot copy inorganic PV device structures! 
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Donor:acceptor composites for charge separation 

Electron 
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Electron 
donor C60 Conjugated 

polymer 

Donor acceptor blend 

active region 

EB can be supplied by the energy offset  
between donor and acceptor molecule 



Organic photovoltaic device structure 

• To separate charges, organic semiconductor is doped with a second 
semiconductor with strong electron affinity to make a bulk heterojunction 

Active layer typically 
100s of nm - limited 
by charge transport 

• Active layer and some electrode layers deposited from solution 
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Key steps in photocurrent generation 
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1. Photon absorption 
2 

2. Exciton diffusion 
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3. Exciton dissociation  
geminate charge pair 
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4. Geminate charge pair separation 
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5. Charge transport to contacts 

Current generation 

Exciton decay 

 Other excited states 
e.g. triplets 

Geminate charge pair 
recombination 

Non-geminate charge 
pair recombination 
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Photovoltaic power conversion efficiency 
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 Energy loss at heterojunction results in lower limiting 
efficiency and higher optimum Eg than single material limit 

Current determined by lowest optical gap 

Voltage determined by electrical 
gap at heterojunction 
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State of the Art in Organic Photovoltaics 

2001: Efficiency increased from 1 to 2.5% 

8-9% efficient solar cell 

Figure: courtesy R
ene Janssen, 2012 
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2012: Efficiency exceeds 10% 

There is still room to improve, but many new materials  underperform. 
Simulation methods are needed to relate materials to devices. 
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What we expect from solar cell models 

Molecular semiconductors 
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This problem is too difficult. 
Part of the problem is disorder in molecular materials. 



What we can actually do (sometimes) 

µ, D, α, k, .. 

Microscopic simulation 

• Quantum chemistry + molecular modelling   electronic structure 
• + kinetic Monte Carlo     electron dynamics 

 
• BUT: 

– Computationally intensive: limited to 1 – 10 nm 
– Microstructure hard to validate 
– Interfacial processes poorly understood 
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Voltage 

What we can actually do (sometimes) 

 
• D(n), µ(n), n(V)  Energetic disorder 
• G ≠ absorption  Energetic driving force, delocalisation 
• R = k(n) n p  Energetic disorder, phase segregation 

 
• BUT 

– Terms in DEs not well known,  
– Not predictive,  not structure specific 

 

µ, D, α, k, .. 

Macroscopic simulation 
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Tools for multi-scale modelling of charge transport 
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Define transport unit (Quantum  
Chemistry) 

(UFF, 
AM1, 
DFT) 

HOMO: Highest Occupied Kohn Sham 
Energy Level (well defined) 

LUMO: HOMO+TD-DFT(1st Singlet): 
TD-DFT 'spectroscopic' calculation 
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Calculations of excited states and energies 

• Excited states calculated using DFT with B3lyp 6-31g* plus TDDFT singlet at same 
level. Find energies and oscillator strengths. 

• Validate excited state calculations against absorption or electrochemical spectra 
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• Use excited state calculations in molecular design 



Tools for multi-scale modelling 

Simulation of  
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Intermolecular charge transfer 

Charge transfer reaction: 
  Mi

- + Mj  Mi + Mj
- 

λ 

Initial state 
Final state 

Nuclear coordinates 
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∆G = Ej - Ei + corrections 

Electronic coupling J = <ψi | He| ψj> 

Site energies Ei, Ej 

Reorganisation energy λ 

e.g.: V. Corpoceanu et al., Chem. Rev. 2007, 107, 926-952 
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Charge transfer rate from non-adiabatic 
Marcus theory: 

ħ 



Calculation of rate parameters 

• Jij depends on 
– chemical structure 
– separation |J| ~ exp(-r/r0) 
– orientation 

•  λ depends on 
– chemical structure 
– dielectric environment 

• Site energies depend on 
– chemical structure  
– conformation 
– intermolecular interactions 
– external applied fields 

Charge transfer dynamics are 
extremely sensitive to molecular 

packing!  
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Case study: Discotic phases of HBC 

• Branched side chains   
– more stacking disorder than linear side chains 
– higher probability of very low transfer integral 
– lower mobilities 

• Simulations reproduce experimental mobilities with no fitting parameters 
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Case study: effect of C60 grain size on mobility 

Ts 

Tvac 

Model of vacuum deposition.  
Isotropic force field. Ts determines 
rate of diffusion hence crystal size. 

• How does C60 grain size influence FET electron mobilities ? 
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• Simulations explain weak dependence of 
FET mobility on grain size 



Case Study: charge transport in fluorene polymers 
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 • Why is hole transport in polyfluorenes so sensitive to side chain type? 
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Sqrt E (V/cm)1/2 

• Simulate packing of fluorene oligomers (tetramers) with different side chain 
• Fix relaxed tetramers into positions found by MD. 
• Calculate transfer integrals between neighbours 

Do short chains lead to 
hopping hot spots? 



Case Study: charge transport in fluorene polymers 
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Density 1.66 monomers /nm3 Density 1.87 monomers /nm3 

• Simulate charge transport by hopping between tetramers: 

Mobility 0.98 cm2/Vs Mobility 1.35 cm2/Vs 

• Mobility is increased for short side chains but not enough 
• Packing disorder cannot explain the results 
• Currently including disorder in energies of states considering conformational defects 



Conclusions from microscopic simulation 

µ, D, α, k, .. 

• Have tools to calculate energies and positions of molecules and molecular 
segments 

• Have tools to calculate charge (and exciton) dynamics 
• Can rationalise charge mobility for different materials 
• Can calculate a density of states 
• Problem is in validating the structure simulated 
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One-dimensional model of OPV device 

• Active layer is an effective semiconductor medium with conduction band 
energy at LUMO of acceptor and valence band at HOMO of donor 
 

• Charge dynamics and electrostatics within active layer described by coupled 
partial differential equations 
 

• Semiconductor – electrode interface described by boundary conditions 
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One-dimensional model of OPV device 

• In steady state, three coupled second order differential equations describing  
– electron and hole density, electron and hole current, electric potential 

 
• Boundary conditions describe terminal potential difference, and electron and 

hole flux at boundaries 
 

• Straightforward to solve for semiconductors with linear coefficients 
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• In organic semiconductors, k, D and µ are not constants  



Modelling effect of energetic disorder : Steady state 
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Power law form for 
exponential DoS 

• Include carrier density dependent mobilities and recombination rate in device model 
• Can use general form for densities of states 

For exponential DoS: 



Including energetic disorder in device simulation 
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• Comparison of several classes of density of states.  
• An exponential tail of states is necessary to reproduce both  

– bimolecular recombination coefficient  
– intensity dependent device J-V 

 



Determining the shape of the energetic density of states 

• How to determine DoS more precisely? Large amplitude transient measurements. 
• Discretise the tails and include trapping, detrapping and recombination from each 
• Fit several photocurrent transients and device J(V) simultaneously  
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Extract best DoS as exponential fit or free form fit. 
But, many parameters and hard to validate. 



Summary and Conclusions 

• Simulation of organic solar cells is complicated by disorder and poorly understood 
mechanisms  
 

• Charge dynamics in organic semiconductors can be modelled by a three level process 
(MD, Quantum chemistry and kinetic MC) 
 

• In simple cases microscopic models can explain experimental trends in mobility 
 

• Energetic disorder arises from variations in chemical structure and molecular packing, 
and influences the response of solar cells 
 

• When included in device model, energetic disorder explains trends in device response. 
 
 

• First step on the way to predictive device simulation!  
 
 


