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 Chemical structure theory is valid (molecules,  
    chemical bonds, …)  
 Model systems composed of large number of  
    atoms are of interest 
 Proteins may be considered  as advanced   
    materials  (at least for biotechnology) 
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Мolecular mechanical (MM) model 
The system is composed of atoms 
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Electronic structure models  

H ESC C=
Numerical solution of matrix equations   

Molecules are stable systems of nuclei and  
electrons 
 
As such, their structure and dynamics should 
be governed by Quantum Mechanics 



 
 
 
 
 
 
 

 
 
 

   Why do we need quantum mechanics? 
 
      

Computer simulation of advanced materials 



 
 
 
 
 
 
 

 
 
 

  Why do we need quantum mechanics? 
- Excited electronic states are involved 

Example:  
fluorescent 
proteins  v 
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     Why do we need quantum mechanics? 
 -  Cleavage and formation of chemical bonds are involved 
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Example: hydrolysis of  adenosine triphosphate (ATP) 
in motor proteins  

Grigorenko B.L., Nemukhin A.V., et al., Proc Natl Acad Sci USA, 104, 7057 (2007) 



 
 
 
 
 
 
 

 
 
 

  Why do we need quantum mechanics? 
- Force field parameters may be not accurate enough  

GTP

Grigorenko B.L., Shadrina M.S., Nemukhin A.V., et al., Biochim Biophys Acta, 1784, 1908 (2008) 
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Basics of quantum mechanics 



General considerations    

Quantum and classical mechanics    

Wavefunctions    

Observables    

Hydrogen atom   

Spin    

Basics of quantum mechanics 



Quantum mechanics is the theory of the behavior of microscopic  
objects, including electrons and nuclei, for which  
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is comparable to the Planck’s constant   ћ ≈ 10-34 J·s 



 The Hamilton–Jacobi formulation  
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(i=1,…,n) The Euler-Lagrange equations 

 

The Hamiltonian ( H=T+V )  
 
 
The Hamilton's equations 
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 The Lagrangian function ( L=T-V ) 
 

Classical Mechanics 



Classical mechanics          Quantum mechanics
S » ћ S ~ ћ

System can be characterized by a 
function of coordinates and time 

),,...,( 1 tqqS n ),,...,( 1 tqq nΨ

Correspondence
principle 

This function S can be found as a
solution of the differential equation 
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System can be characterized by  
functions of coordinates and time 

Functions Ψ can be found as 
solutions of the differential equation 

Knowing function S one can find
trajectories and to compute 
observables 

Knowing functions Ψ one can 
compute observables 

S defines states of the system Each Ψ refers to a state of the system



Classical and Quantum Mechanics 

Keywords:  
  
System   
 
States  … of the system  
 
Wavefunction … of a state 
 
Observables  … for a particular state 



A particle of mass m in a one- 
dimentional potential V(x)  
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One-elctron atom: an electron  
in the field of a nucleus   
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  System              the Hamiltonian operator   Ĥ

As only we select a system for an analysis we can write down an 
explicit expression for the Hamiltonian operator. 

Quantum Mechanics: Keyword “System” 

Examples: 



Quantum Mechanics: Keyword “States of the system” 

An essential feature of QM is that certain parameters of the system  
can take on discrete values varying from one state to another by  
‘quantum jumps’.   

Example: Few states of the hydrogen atom 

  State Total energy 
(1020 J/atom) 

Electronic 
angular  
momentum 

1s -218.6 0 

2s -54.6 0 

2p -54.6 √2 ħ 



These ‘jumps’ are observed in  
experimental spectroscopy  

State 1s of the hydrogen atom 

States 2s and 2p of the hydrogen atom 

Total energy 
(1020 J/atom) 

-218.6 
-54.6 
-54.6 



Classical and Quantum Mechanics 

Keywords:  
  
System   
 
States  … of the system  
 
Wavefunction … of a state 
 
Observables  … for a particular state 



Quantum Mechanics: Keyword “Wavefunction” 

The state of a system is described by a wavefunction  
of the coordinates and the time Ψ(q1,…, qn,t) 
  
The probability: 

The probability that the particle 
is in the volume element dxdydz 
located at     , at time t.   

Ψ must satisfy mathematical conditions: 
• Single-value 
• Continuous 
• Quadratically integrable 
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Quantum Mechanics: Keyword “Wavefunction” 

Why probabilities? 



The Heisenberg uncertainty principle: “The more precisely the  
position is determined, the less precisely the momentum is known  
in this instant, and vice versa.”   
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Quantum particles do not travel along trajectories. 



The “negative content” (Landau, Lifshchitz) of the uncertainty  
principle is balanced by the “positive content” of  
the superposition principle: 

If  Ψ1, Ψ2, …, Ψn  are the possible states of a system, then the linear  
combination of these states is also a possible state of the system    

Keyword “Wavefunction”: Superposition principle 

Physical consequence:      The equations for Ψ must be linear, e.g.,  
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Either the Schrödinger equation,  
or the superposition principle  
should be postulated  
 



Postulates of Quantum Mechanics 

dxdydztrtr ),(),(* ΨΨ  The probability that the particle 
is in the volume element dxdydz 
located at     , at time t.   

 
 
1. Probabilities (due to the uncertainty principle):   

r

If  Ψ1, Ψ2, …, Ψn  are the possible states of a system, then the linear  
combination of these states is also a possible state of the system.    

 
2. The superposition principle: 

 
3. For every observable mechanical quantity of a system, there is a  
    corresponding linear Hermitian operator associated with it.    

and 



                  Quantum Mechanics 

Keywords:  
  
System   
 
States  … of the system  
 
Wavefunction … of a state 
 
Observables  … for a particular state 



Keyword “Observables”  
For every observable mechanical quantity of a system, there is a  
corresponding linear Hermitian operator associated with it. 
 
To specify this operator, write down the classical expression for the  
observable in terms of Cartesian coordinates and the corresponding  

linear momentum, and then replace each coordinate x by the operator 

    and each momentum component px by the operator    
   
    

x
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Keyword “Observables”  
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Some mechanical quantities and their operators 
 
 
Position (x)   
 
 
Linear momentum (px) 
 
 
Angular momentum  
        (Lz=xpy-ypx) 
 
 
Total energy (T+V) 
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Keyword “Observables”  

If a system is in a state described by a normalized wavefunction Ψ,  
then the average value of the observable A in this state is given by  
 
 
The Hermitian operator ensures a real number for      .  
We talk on average values by the same reasons as on probabilities  
(the uncertainty principle).    
 

〉ΨΨ〈=Ψ AA


|
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Keyword “Observables”: Eigenfunctions and eigenvalues  

Finding eigenfunctions and eigenvalues of operators associated with 
observables is one of the major goals of QM.  

iii EH Ψ=Ψˆ

nenneenucleielectrons VVVTTH −−− ++++=
ˆ

Solution of the time-independent Schrödinger equation  
allows one to find the total energies Ei of the system under study.  
 
In particular, for any molecule composed of electrons (e) and nuclei (n)  
 
 

The differential equations must be augmented by the boundary  
conditions for the wavefunctions (single-value, continuous, …) since  
they describe waves of probabilities.   



Keyword “Observables”: Orbital angular momentum  
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Keyword “Observables”: Measurements  

Important question of the QM theory: What do we know about A in the 
state characterized by the wavefunction Ψ? 
 
Answer: If Ψ happens to coincide with one of the eigenfunctions of 
              then in this particular state we know A precisely, and the only 
              result of the measurement is the corresponding eigenvalue of      
 
              If Ψ does not coincide with any of the eigenfunctions of  
              then we can predict only the averaged value of A: 
 
 
              A probability of measuring a particular value ak in the state Ψ 
              is     
 
               

A


A
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where Φk is the corresponding eigenfunction of     .     
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Keyword “Observables”: Back to the uncertainty principle 
Another important question of the QM theory:  
Can we know two mechanical variables A and B simultaneously and 
precisely? 
 
Answer: Two observables A and B are principally simultaneously 
measurable (have the common set of eigenstates) if and only if their 
corresponding operators commute                  . 
 
 
               

ABBA


=

More specifically: The commuting operators have the same set of 
eigenfunctions, and if the wavefunction of a particular state coincides  
with one of these eigenfunctions, one may know A and B  
simultaneously and precisely in this state.  
 
When the operators do not commute, one can never know A and B 
simultaneously and precisely in any state.  
              



Keyword “Observables”: Back to the uncertainty principle 
 
Quantitative side of the uncertainty principle 
The uncertainties ΔA and ΔB of any two observables in any physical 
state Ψ satisfy the inequality 
              ||)(||

2
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Position and momentum:   
 
hence,             
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Keyword “Observables”: Back to the uncertainty principle 

Angular momentum operators               
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The commutators               
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Keyword “Observables”: Back to the uncertainty principle 
All three components of angular momentum cannot be measured 
simultaneously, which tells us that there does not exist any physical 
state in which the direction of angular momentum is definite.  
However, there do exist states in which the magnitude of angular 
momentum is definite along with one component. 

z 

x 

y 

One can know simultaneously and precisely L2 and Lz while no  
knowledge on Lx and Ly is allowed. The physical reasons are traced 
back to the uncertainty principle.  
 



Keyword “Observables”: Example of commuting operators 

The commuting operators                   have a  
common set of eigenfunctions.  
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The spherical harmonics 
 

The solutions 



Hydrogen atom 
The one-electron atom: The system - an electron with the charge e and  

                                       mass μ in the field                                        

                                       The Hamiltonian operator 
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States of the system are described by the  
solutions of the equation  

),,(),,( ϕθϕθ rErH Ψ=Ψ


Since  zLLH


  and  , 2 are the pairwise commuting operators  

there exist states in which the total energy, the magnitude of angular 
momentum, and the component of angular momentum are definite. 

 0   ,0   ,0 2222 =−=−=− LLLLHLLHHLLH zzzz




Hydrogen atom 

Therefore, the energy eigenstates may also be chosen to be eigenstates 
of the angular momentum operators 

),()(),,( ϕθϕθ lmElE YrRr =Ψ
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Hydrogen atom 

Therefore, the energy eigenstates may also be chosen to be eigenstates 
of the angular momentum operators 

),()(),,( ϕθϕθ lmElE YrRr =Ψ

Radial eigenfunctions REl(r) and energies E are computed from the  
ordinary differential equation    
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Boundary conditions: R(r) and                must be continuous, R(r) must 

be quadratically integrable                            .  
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Hydrogen atom: States 
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Quantum Mechanics: Keywords “States of the system”

An essential feature of QM is that certain parameters of the system 
can take on discrete values varying from one state to another by
‘quantum jumps’.  

Example: Few states of the hydrogen atom

√2 ħ-54.62p

0-54.62s

0-218.61s

Electronic
angular  
momentum

Total energy
(1020 J/atom)

State

n=1,2,…      l=0,1,…,n-1           m=-l, -l+1,…l 

1s       n=1, l=0, m=0 
2s       n=2, l=0, m=0 
2p      n=2, l=1, m=-1,0,1 
3s       n=3,l=0,m=0  
···   



Hydrogen atom: Images of wavefunctions 

1s       n=1, l=0, m=0 
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Hydrogen atom: Images of wavefunctions 

2s       n=2, l=0, m=0 
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Hydrogen atom: Images of wavefunctions 

2p       n=2, l=1, m=0 
 

22 rRnl

2
nlR

nlR



Hydrogen atom: Images of wavefunctions 

3s       n=3, l=0, m=0 
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Hydrogen atom: Images of wavefunctions 

3p       n=3, l=1, m=0 
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Hydrogen atom: Images of wavefunctions 

3d       n=3, l=2, m=0 
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Hydrogen atom: Atomic Orbitals (AOs) 

3d  3p  

2p  2s  

1s  

3s  



Spin  
 
In the non-relativistic quantum mechanics, we have to assign to every  
‘elementary’ particle an angular momentum which is not related to 
possible ‘orbiting’ of the particle. An internal angular momentum, the 
vector with components sx,sy,sz, is called spin. Unlike orbital angular 
momentum these components cannot be expressed in terms of Cartesian 
coordinates and linear momenta.  
 
The square of the spin length is a characteristic feature of a particle:  
for every electron in all states it has the value                
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The theory of spin is constructed by analogy with the theory of 
orbital angular momentum.  
Important: the commutator relations  

• only two quantities are measurable s2  and sz 
•                            have a common set of eigenvectors  zss   and   2
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For electrons:  s=½ (always) 
                      ms = -½, +½ 

  ,| 〉sms
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The theory of spin is constructed by analogy with the theory of 
orbital angular momentum.  
Important: the commutator relations  

• only two quantities are measurable s2  and sz 
•                            have a common set of eigenvectors  zss   and   2
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For electrons:  s=½ (always) 
                      ms = -½, +½                              Orbital angular momentum 
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Spin 

z z 

+ћ/2 

-ћ/2 

√3ћ/2 

√3ћ/2 

Two possible spin states of an electron 
 

〉===〉 2/1,2/1|| smsα 〉−===〉 2/1,2/1|| smsβ



Spin – Application of addition of angular momentum 
2-electron spin vectors                               (j1=½, j2=½) 
                                           
The total spin of two electrons may be either |½-½|=0 (singlet states),  
                                                                    or  ½+½=1 (triplet states) 

z z

+ћ/2

-ћ/2

√3ћ/2

√3ћ/2

Two possible spin states of an electron

〉===〉 2/1,2/1|| smsα 〉−===〉 2/1,2/1|| smsβ

Singlet state 2-electron spin vector 
 

Triplet state 2-electron spin vectors 
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Interchange Hypothesis For Identical Particles 
 
Interchanging the positions of two identical particles does not change 
the physical state. 
 
Identical (elementary) particles have the same parameters – the mass, 
charge, and magnitude of spin momentum. Positions      and spin 
projections σ are considered as ‘coordinates’. 
 

),...,,...,...,(),...,,...,...,( 1111 NNiijjNNjjii rrrrrrrr σσσσσσσσ  Ψ±=Ψ

The wavefunctions must be either symmetric or antisymmetric with 
respect to an interchange of positions and spin projections of any 
pair of identical particles: 

r



The Spin Statistics Theorem  
 
Systems of identical particles with integer spin s = 0; 1; 2;… are 
described by wavefunctions that are symmetric under the interchange 
of particle coordinates and spin. Systems of identical particles with 
half-integer spin s = 1/2; 3/2;… are described by wavefunctions that 
are antisymmetric under the interchange of particle coordinates 
and spin. 
 
Particles with integer spin are known as Bosons. Particles with half-
integer spin are known as Fermions. Examples include, in particular, 
electrons, and protons.  
 
Therefore, electronic wavefunctions must satisfy a condition 

),...,,...,...,(),...,,...,...,( 1111 NNiijjNNjjii rrrrrrrr σσσσσσσσ  Ψ−=Ψ



System  
States of the system     

Correspondence principle 
Classical mechanics    

Wavefunctions   
Superposition principle 
Hilbert space  

Observables  
Uncertainty principle   

Hydrogen atom 
Orbitals   

Spin 
Spin coupling 
Interchange hypothesis   

Quantum Mechanics for the Electronic Structure Theory  
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Molecules are stable systems of nuclei and  
electrons 
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Molecules are stable systems of nuclei and  
electrons 
 

The Born-Oppenheimer approximation  

       Moving further 

To a high degree of accuracy we can separate electron 
and nuclear motion due to larger masses of nuclei   
 
 



The Born-Oppenheimer Approximation 

nenneenucleielectrons VVVTTH −−− ++++=
ˆ

nenneenucleielectrons VVVTTH −−− ++++=
ˆ

el 

 

ˆ H elψ el (r;R) = Eelψ el (r;R)

 

U(R) = Eel + VNN

Electronic equation     

BO approximation leads to the idea of a potential 
energy surface 

n-n 

to the nuclear equation 



 
Solution of the nuclear quantum equation allow us to 
determine a large variety of molecular properties. 
An example are vibrational spectra.  
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Example: calculated vibration of the -C=O group in the  
bacteriochlorophyll of photosynthetic reaction centers   



Rhodopsin 

Bathorhodopsin 

 С11 

 С12 

Example: calculated vibration with the imaginary frequency 
on the route of retinal isomerization in rhodopsin    

Khrenova M.G., Bochenkova A.V., Nemukhin A.V., Proteins, 78, 614 (2010) 



About electronic equation etc 
 
The lecture by Professor Gian Paolo Brivio  
“Ab-initio & DFT“   on July 18  



Concluding examples  
How does it work? 



Concluding examples  
How does it work? 
 
Green  
Fluorescent 
Protein  

гидроксибензилиден-имидазолинон

НВМО

ВЗМО

hydroxybenzylidene-imidazoline  

HOMO 

LUMO 

Chromophore 
 





 



 



 



 



 



Concluding examples  
How does it work for large systems? 

QM

Primary
interest

MM

Coupling

Practically useful tool - Quantum mechanical – molecular 
mechanical (QM/MM) approach 
 



Theory: QM/MM (DFT(PBE0/6-31G*)/Amber) Experiment (PDB ID - 1GFL):  
X-ray diffraction  (PH 7, resolution 1.9A) 

3.6 

2.5 

2.6 2.6 
neutral 

3.3 

2.6 

2.6 
2.6 

anion 

3.3 

2.6 

2.7 
2.7 

The results of QM/MM simulations: Geometry of the GFP active site 











 
 

Atom and molecular structure 
Quantum level of matter 

 
 
 
 
 
 
 

 
 
 

Computer simulation of advanced materials 
International Summer School 

Textbook materials and illustrations 

Software  QM: GAMESS(US), Firefly, NWChem, CP2K 
                 QM/MM: GAMESS(US)-Tinker  



Concluding Remarks 
 
• This is a part of the lecture course ‘Quantum Mechanics 
  and Molecular Structure’ for students of the Chemistry 
  Department of  the M.V. Lomonosov Moscow State University 
 
• Part of the tutorial lecture at the workshop 
  “Mathematical and Computational Approaches to Quantum  
   Chemistry (Institute of mathematics and its applications, 
   Minneapolis, 2008) 
 
• Thanks to co-authors of the papers 
 
    


