

Computer simulation of advanced materials

International School of the European University network

MSU Nanotechnology Education and Research Center

Materials in extreme states: from <u>WARM DENSE MATTER</u> to

PCAN

laser induced surface nanostructuring

Norman G.E.

JOINT INSTITUTE for HIGH TEMPERATURES RAS

PHYSICS and TECHNOLOGY

MOSCOW INSTITUTE of

Coauthors from MIPT/JIHT RAS

MIPT PhD student S.V.Starikov JIHT junior researcher Ph.D. 2010 V.V.Stegailov P.A.Zhilyaev born **1987** Dr.Habil. 2012 JIHT senior researcher **MIPT PhD student** JIHT laboratory head MIPT assistant JIHT junior researcher MIPT assistant professor born 1984 born **1988** born 1981

Contents

Warm dense matter (WDM), examples

Two temperature WDM. *Exotic properties*

Basic equations for WDM relaxation

Electron-temperature dependent interionic potential

Example 1: Laser ablation of gold

Example 2: Tracks formation in metals

Warm dense matter Examples

Diverse sources of generation:

WDM IR, visible, UV, XUV lasers

A. Saemann, K. Eidmann, I. E. Golovkin, et al, PRL <u>82</u>, 4843 (1999)
K. Widmann, T. Ao, M. E. Foord, et al, PRL <u>92</u>, 125002 (2004)
S. B. Hansen, K. B. Fournier, A.Ya. Faenov, et al, <u>PRE 72</u>, 036408 (2005)
Y. Ping, D. Hanson, I. Koslow, et al, PRL <u>96</u>, 255003 (2006)
U. Zastrau, C. Fortmann, R. R. Fäustlin, et al, PRE <u>78</u>, 066406 (2008)

fast single ions, ion beams in condensed matter

A.V.Lankin, I.V.Morozov, G.E.Norman, S.A. Pikuz Jr., I.Yu.Skobelev Phys. Rev. E <u>79</u>, 036407 (2009)

Nanosecond Electric Explosion of Wires

G.E. Norman, V.V. Stegailov, A.A. Valuev. Contrib. Plasma Phys. <u>43</u>, 384 (2003) Explosions of tips (protrusion, whisker) on cathode surface Two temperature warm dense matter. Exotic properties

Gold: electron DOS (d- and s-electrons)

FCC gold phonon spectrum after pulse irradiation

Spatial redistribution of the electron density after the electron temperature increase

Basic equations for WDM relaxation

Electron-temperature dependent interionic potential

Electronic pressure (delocalized electron energy)

Complete model

ELECTRONS: thermal conductivity equation at continuum media MD simulation for IONS: ETD-potential + Langevin thermostat + P_e modification of LAMMPS

$$C_{e} \frac{\P T_{e}}{\P t} = \tilde{N} \left(K_{e} \tilde{N} T_{e} \right) - \left[g_{p} \left(T_{e} - T_{i} \right) + \tilde{N} Q \right]$$
$$m \frac{d \tilde{V}_{i}}{dt} = \tilde{F}_{i} \left(T_{e} \right) - \left[b \tilde{V}_{i} + \tilde{X} \left(T_{e} \right) - \frac{\tilde{N} P_{e}^{deloc}}{r_{ion}} \right]$$

$$Q = I_0 \exp[-x/d] \quad t < \text{pulse width}$$
$$Q = 0 \quad t^3 \text{ pulse width}$$
$$laser ablation$$

initial distribution of T_e track formation

$$g_p$$
 – factor of electron-ion relaxation
 C_e – electron heat capacity
 K_e – electron heat conductivity

$$\beta = \beta(g_p, C_e) \qquad \xi \sim T_e^{1/2}$$
$$t = \frac{m}{b} \qquad \tau \sim 20 \text{ ps}$$

Electron-temperature dependent interionic potential

ETD-potential for gold

$$U = \sum_{i,j < i} \phi_{ij}(r_{ij}) + \sum_{i} F(\rho_{i}),$$

$$\rho_{i} = \sum_{j \neq i} \rho(r_{ij})$$
 (EAM)

 $----- T_e = 0.1 \text{ eV} \\ ----- T_e = 3 \text{ eV} \\ ----- T_e = 6 \text{ eV}$

ETD-potential for gold

$$\sum_{j} (r_{0}(r_{j}) + r_{1}(r_{j})) = e^{-r_{2}(r_{j}) + e^{-r_{2}(r$$

Starikov S.V., Stegailov V.V., Norman G.E. et al. JETP Lett., V. 93, pp. 642-647 (2011) Норман Г.Э., Стариков С.В., Стегайлов В.В. ЖЭТФ, том 141, выпуск 5, С. 910-917 (2012)

Verification of ETD-potential for Au at $T_e = 0.05 \text{ eV}$

	V_0 , \AA^3	E _c , eV	C ₁₁ , GPa	C ₁₂ , GPa	T _{melt} , K
experiment	10.22	3.8	202	170	1338
MD	10.23	4.1	225	180	1210

Melting curve calculation, **Fe** Two-phase 3D modeling

$$E_{conf} = \mathop{\mathbf{a}}_{i}^{\circ} E_{i}$$

$$E_{i} = \frac{1}{2} \mathop{\mathbf{a}}_{j^{1}i}^{N} f(r_{ij}) + F(r_{i})$$

$$r_{i} = \mathop{\mathbf{a}}_{j^{1}i}^{N} r(r_{ij})$$

EAM potential

Projection onto xy plane

Melting curve T_m(P) for Fe

 $T_{\rm e}$ -dependence of Au crystal melting temperature

Electronic pressure in gold

Electronic pressure in gold

Laser ablation of gold

"short" and "long" ablation mechanisms for sub-ps pulses

$F = 1600 J/m^2$

ablation mechanism

"short" ablation mechanism

"long" and "short" ablation mechanisms

Схема откола при УВ нагружении

Dependence of crater depth on absorbed fluence (sub-ps pulses)

Dependence of crater depth on absorbed fluence (sub-ps pulses)

Dependence of crater depth on absorbed fluence (sub-ps pulses)

Laser ablation of gold

Dependence of crater depth on absorbed fluence (ps pulse)

Laser ablation of gold

Dependence of crater depth on absorbed fluence (ps pulse)

Norman G.E., Skobelev I.Yu., Stegailov V.V. Excited States of Warm Dense Matter **Contrib. Plasma Phys.** 2011. V. 51. Issue 5. P. 411-418.

Стариков С.В., Стегайлов В.В., Норман Г.Э., Фортов В.Е., Ишино М., Танака М., Хасегава Н., Нишикино М., Охба Т., Каихори Т., Очи Е., Имазоно Т., Кавачи Т., Тамотсу С., Пикуз Т.А., Скобелев И.Ю., Фаенов А.Я. Лазерная абляция золота: эксперимент и атомистическое моделирование **Письма в ЖЭТФ** 2011. Т.93, №11. С.719-725

> Г.Э. Норман, С.В. Стариков, В.В. Стегайлов, "Атомистическое моделирование лазерной абляции золота: эффект релаксации давления" **ЖЭТФ**. Т 141. выпуск 5. С. 910-918 (2012)

G.Norman, S.Starikov, V.Stegailov, V.Fortov, I.Skobelev, T.Pikuz, A.Faenov,
S.Tamotsu, Y. Kato, M.Ishino, M.Tanaka, N.Hasegawa, M.Nishikino, T.Ohba,
T. Kaihori, Y.Ochi, T.Imazono, Y. Fukuda, M.Kando, T.Kawachi
"Nanomodification of gold surface by picosecond soft X-ray laser pulse"
Journal of Applied Physics. 112, Issue 1, 3 July 2012 [9 pages]

G. E. Norman, I. M. Saitov, S. V. Starikov, V.V. Stegailov and P. A. Zhilyaev. Atomistic Modeling of Warm Dense Matter in the Two-Temperature State submitted to Contrib. Plasma Phys. Г.Э. Норман, В.В. Стегайлов.

Стохастическая теория метода классической молекулярной динамики Математическое моделирование. 2012 год, том 24, номер 6, стр. 3-44

В.М.Замалин, Г.Э.Норман, В.С.Филинов. Метод Монте Карло в статистической термодинамике. Москва, Наука, 1977. http://www.ihed.ras.ru/norman/paper_view.php?p=45

The Formation of Warm Dense Matter: Experimental Evidence for Electronic Bond Hardening in Gold.

R.Ernstorfer, M.Harb, C.Hebeisen, G.Sciaini, T.Dartigalongue, R.Miller Science. Vol. 323. no. 5917, pp. 1033 – 1037. *20 February 2009*

Tm = 1330 K

The energy deposited in WDM can be by order of magnitude higher because of the creation of the two-temperature state and corresponding ion lattice hardening

> The final explosion can be a spinodal decay of a particular two-temperature metastable state

Formation of two-temperature state:

experimental evidence for electronic bond hardening in gold

Ernstorfer R. et al. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold // Science. 2009.

Recoules V. et al. Effect of Intense Laser Irradiation on the Lattice Stability of Semiconductors and Metals// PRL. 2006.

FIG. 1 (color online). Phonon spectrum of Si at different electronic temperature. The black curve is the spectrum for Te = 0 eV. The green curves are for Te = 2.15 eV. Open circles are experimental results from [26].

FIG. 2 (color online). Phonon spectrum of Au at different electronic temperatures. The black curves are the spectrum for room temperature. The green curves are for Te = 6 eV. Open circles are experimental results from [27].

Simulation of tracks formation in metals

Moving of high energy ion through matter

Initial distribution of electronic temperature

Energy loss of Xe ion in metal dE/dz (KeV/nm) $dE/dz = (dE/dz)_n + (dE/dz)_e$ 35 30 **Xe in Mo** 25 20 electronic stopping 15 10 nuclear stopping 5 0 100 0,01 0,1 10 Ion energy (MeV) **SRIM 2011**

Energy loss of Xe ion in metal dE/dz (KeV/nm) $dE/dz = (dE/dz)_n + (dE/dz)_e$ 35 30 🛨 Xe in Mo 25

Two-temperature modelIon subsystemElectronic subsystem $m \frac{d\mathbf{v}_i}{dt} = \mathbf{F}_i - b \mathbf{v}_i + \mathbf{F}_i^{Lang}(T_e)$ $C_e \frac{\P T_e}{\P t} = \tilde{N}(K_e \tilde{N} T_e) - G_e(T_e - T_i)$ Interatomic potential

Мо

Starikov S., Insepov Z., Rest J., Kuksin A., Norman G., Stegailov V., Yanilkin A. // *Phys. Rev. B* 84 104109 (2011)

U

Smirnova D., Starikov S., Stegailov V. // J. Phys.: Condens. Matter **24** 015702 (2012)

Characteristics of the electronic subsystem

$$C_e = \gamma T_e$$
; K_e ; G

Simulation of track formation in Mo

Profiles of electronic and ionic temperatures

dE/dz = 140 KeV/nm

Profiles of electronic and ionic temperatures

Dependence of temperature on time

Мо

dE/dz = 160 KeV/nm

dE/dz = 160 KeV/nm

Simulation of track formation in U

Profiles of electronic and ionic temperatures

dE/dz = 28 KeV/nm

U

Profiles of electronic and ionic temperatures

dE/dz = 28 KeV/nm

U

Dependence of temperature on time

dE/dz = 28 KeV/nm

U

Образование дефектов при нагреве/плавлении ионной подсистемы

(атомы раскрашены в соответствии с координационным числом)

dE/dz = 28 KeV/nm

Defect formation at heating/melting of ionic subsystem

Conclusions

A new approach is developed to model and simulate *two-temperature* warm dense matter relaxation

The approach is used to study some examples of laser ablation and tracks formation

Distribution of electron density in Aluminium. $n_{e}(T) - n_{e}(0), 10^{21} \text{ cm}^{-3}$

Density of current of thermal emission in Aluminium.

Surface density of uncompensated positive charge.

Properties of electronic subsystem

Electronic subsystem:

$$C_e(T_e) \cdot \rho_e \cdot \frac{\partial T_e}{\partial t} = \nabla (K_e(T_e) \cdot \nabla T_e) - g_p(T_e - T_i) + \nabla Q$$

Electronic subsystem:

$$C_e(T_e) \cdot \rho_e \cdot \frac{\partial T_e}{\partial t} = \nabla (K_e(T_e) \cdot \nabla T_e) - g_p(T_e - T_i) + \nabla Q$$

DFT calculation

Calculation of electron heat conductivity

Calculation of electron heat conductivity

Kubo-Greenwood Formula

$$\mathcal{L}_{ij} = (-1)^{(i+j)} \frac{he^2}{\Omega} \lim_{\varepsilon \to 0} \frac{f(\varepsilon'_k) - f(\varepsilon_k)}{\varepsilon} \,\,\delta(\varepsilon'_k - \varepsilon_k - \varepsilon) \times \sum_{k', \, k} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_{k'} \rangle \langle \psi_{k'} | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} (\varepsilon_k - \mu)^{j-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_{k'} \rangle \langle \psi_{k'} | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} (\varepsilon_k - \mu)^{j-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} (\varepsilon_k - \mu)^{j-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \widehat{\boldsymbol{v}} | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \psi_k \rangle \,(\psi'_k | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \psi_k \rangle \,(\psi'_k | \psi_k \rangle \,(\psi'_k | \psi_k \rangle \,(\varepsilon'_k - \mu)^{i-1} \langle \psi_k | \psi_k \rangle \,(\psi'_k | \psi'_k \rangle$$

$$K = \frac{1}{eT} \left(\mathcal{L}_{22} - \frac{\mathcal{L}_{12}^2}{\mathcal{L}_{22}} \right); \ K(\mathbf{0}) = \lim_{\omega \to \mathbf{0}} K(\omega) \qquad \text{Static heat conductivity}$$

 $\sigma = \mathcal{L}_{11}; \sigma(0) = \lim_{\omega \to 0} \sigma(\omega) \qquad Static \ conductivity$

Electron heat conductivity of liquid aluminum in two-temperature state

Electron heat conductivity of solid gold in two-temperature state

Laser ablation of gold

Ion structure in simulation box

Ion structure in simulation box

Ion structure in simulation box

280 nm	X

280 nm	X

