Large scale DFT based Molecular Dynamics in the condensed phase

Joost VandeVondele Nanoscale Simulations, ETH Zurich

Ab Initio Molecular Dynamics

- Molecular Dynamics
 - Classical equations of motion for the ions: F=ma
 - NVE and other ensembles (NVT, NPT)
 - Crucial for systems including liquids
- 'Ab Initio' or 'First Principles'
 - Forces on atoms derive from a non-empirical description of the electronic structure
 - 99% DFT

An chemist's example: oNBA

ortho-Nitrobenzaldehyde

Donten M; Hamm P; VandeVondele J; JPC B 115(5): 1075-1083 (2011)

Solids: spectroscopy at interfaces

BariumNitrate (Ba(No3)2) : a catalyst for automotive applications (NO_x)

Ab initio MD can be used to capture non-harmonic effects Such as overtones and combination bands.

Interfaces at ambient conditions

We want to build and study models that realistically include solids, liquids, molecules

An example interface, as found in Dye sensitized solar cells.

AIMD is GGA dominated

In order for AIMD to be practical, the SCF + forces (BOMD) need to be computed in O(60sec) for typical systems O(100 atoms)

20000 MD steps of 0.5 fs * 60sec / step = 2 weeks for 10 ps

•Highly efficient schemes for GGAs are needed

•Highly robust methods are essential

AIMD is for short timescales

10ps – 100ps is the typical lengthscale of AIMD

- Only very fast processes can be observed spontaneously
- Activated events (reactions) or slow dynamics (diffusion) need more advanced techniques
 - Free energy methods (constraints, enhanced sampling, etc... needed).

Efficient GGA DFT

CP2K

Gaussian and plane waves: GPW in CP2K

The GPW algorithm : compute the GGA Kohn-Sham matrix in O(N) time, PBC are natural.

J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comp. Phys. Comm. 167, 103 (2005). Lippert, G; Hutter, J; Parrinello, M. Mol. Phys., 92 (3), 477-487 (1997).

Basic Computational local DFT

$$n(r) = \sum_{\mu\nu} P^{\mu\nu} \varphi_{\mu}(r) \varphi_{\nu}(r)$$

$$E^{el}[P^{\mu\nu}] = \sum_{\mu\nu} P^{\mu\nu} \int \varphi_{\mu}(r) (-\frac{\Delta}{2}) \varphi_{\nu}(r)$$

$$+ \sum_{\mu\nu} P^{\mu\nu} \int \int \varphi_{\mu}(r) V^{PP}_{sep}(r, r') \varphi_{\nu}(r')$$

$$+ \frac{1}{2} \int \int \frac{n(r)n(r')}{|r-r'|}$$

$$+ \int n(r) \varepsilon_{xc}[n](r)$$
Formally O(M⁴) \rightarrow O(M) with GPW

A closer look at GPW

Real space (rs) density mapping and integration Fourier space (FFT) for the coulomb problem

A Gaussian basis allows for a very efficient procedure to compute the density on the grid

Orbital transformations (OT)

A cubic, very robust algorithm avoiding the of traditional diagonalization

•New variables

$$C(X) = C_0 \cos(\sqrt{X^T S X}) + X \frac{\sin(\sqrt{X^T S X})}{\sqrt{X^T S X}}$$
$$X^T S C_0 = 0 \qquad C(X)^T S C(X) = 1 \ \forall X$$

Direct minimization of E_{ks}[{X}]
 Linear constraint -> guaranteed convergence!

J. VandeVondele, J. Hutter, J. Chem. Phys., 2003, Vol. 118 No. 10, 4365-4369

DFT for large systems

DNA crystal

2388 atoms

Solvated metallo-protein

2825 atoms

Linear scaling construction of the Kohn-Sham matrix, robust and efficient $O(N^3)$ electronic minimization Parameter free & out-of-the-box for H-Rn

J. VandeVondele, J. Hutter, JCP 118, 4365-4369 (2003). Sulpizi, M.; Raugei, S.; VandeVondele, J.; Carloni, P.; Sprik, M. JPCB 111, 3969 (2007).

Robust Ab initio MD

Complex Interfaces

Hydrogen bonding in H2O

Solutes in explicit solvent

Ru(bpy)₂COCI in acetonitrile, [21.43Å]³ or 620 Atoms e.g. Redox properties

In situ IR spectroscopy (1300 atoms)

Water: the most important liquid

In depth investigation of the performance of DFT for liquid water

J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, M. Parrinello, J. Chem. Phys. 122, 014515 (2005). M. Guidon, F. Schiffmann, J. Hutter, J. VandeVondele J. Chem. Phys. 128, 214104 (2008)

Water: the most important liquid

Simulation in the NPT ensemble

Standard functional gets density very wrong

J. Schmidt, J. VandeVondele, IFW Kuo, D. Sebastiani, JI Siepmann, J. Hutter, CJ Mundy JPC B 113(35):11959–11964 (2009)

Water: the most important liquid

Simulation in the NPT ensemble

Dispersion corrected BLYP (BLYP-D) yields: •correct density •excellent pair correlation function

Generally: D correction improves energetics for biologically relevant interactions, such as pi-stacking and hydrogen bonding. Is empirical, but computationally free.

J. Schmidt, J. VandeVondele, IFW Kuo, D. Sebastiani, JI Siepmann, J. Hutter, CJ Mundy JPC B 113(35):11959–11964 (2009) Grimme, S. JOURNAL OF COMPUTATIONAL CHEMISTRY, 27 (15), 1787-1799 (2006).

CP2K: science (I)

A unified view of ligand-protected gold clusters as superatom complexes

Michael Walter[†], Jaakko Akola^{†‡}, Olga Lopez-Acevedo[†], Pablo D. Jadzinsky^{§1}, Guillermo Calero[§], Christopher J. Ackerson^{§|}, Robert L. Whetten^{††}, Henrik Grönbeck^{‡‡}, and Hannu Häkkinen^{†§§111}

PNAS July 8, 2008 vol. 105 no. 27 9157-9162

Electronic structure of nanoparticles

CP2K: science (II)

Modular and predictable assembly of porous organic molecular crystals

James T. A. Jones¹, Tom Hasell¹, Xiaofeng Wu¹, John Bacsa¹, Kim E. Jelfs¹, Marc Schmidtmann¹, Samantha Y. Chong¹, Dave J. Adams¹, Abbie Trewin¹, Florian Schiffman², Furio Cora², Ben Slater², Alexander Steiner¹, Graeme M. Day³ & Andrew I. Cooper¹

16JUNE2011|VOL474|NATURE|367

Structure prediction of metal organic frameworks

CP2K: science (III)

Large variation of vacancy formation energies in the surface of crystalline ice

M. Watkins^{1,2,3}, D. Pan⁴, E. G. Wang⁵, A. Michaelides^{1,2,3}, J. VandeVondele⁶ and B. Slater^{1,3*}

¹Department of Chemistry, Christopher Ingold Building, 20 Gordon Street, University College London, London WC1H 0AJ, UK, ²London Centre for Nanotechnology, University College London, London WC1H 0AJ, UK, ³TYC@UCL, University College London, London WC1H 0AJ, UK, ⁴Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190, China, ⁵School of Physics, Peking University, Beijing 100871, China, ⁶Institute of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. *e-mail: b.slater@ucl.ac.uk.

NATURE MATERIALS | VOL 10 | OCTOBER 2011

Disordered and frustrated materials

CP2K: science (IV)

An atomistic picture of the regeneration process in dye sensitized solar cells

Florian Schiffmann^a, Joost VandeVondele^{a,1}, Jürg Hutter^a, Atsushi Urakawa^b, Ronny Wirz^b, and Alfons Baiker^b

^aInstitute of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; and ^bDepartment of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Hönggerberg, HCI, 8093 Zurich, Switzerland

4830-4833 | PNAS | March 16, 2010 | vol. 107 | no. 11

Functionalized solid/liquid interfaces

Dye sensitized solar cells (DSSC)

Sustainable energy production converting sunlight into electricity

Grätzel, Nature (1991,2001)

~10% efficiency, short energy-payback, tolerant to impurities, inexpensive technologies, cheap materials, wide temperature range, diffuse light OK, various colors (semi-transparent), flexible

DSSC: atomistic engineering

Prototypical high performance cells:

Taylor the interface to improve efficiency, stability and cost

N3 binding on anatase(101)

Relative binding energies are indicative:

- •2-3 carboxylate groups interact
- •2 bpy ligands involved
- •Monodendate and bridged binding possible
- •Protonation strongly influences relative stability

IR spectra: Theory & Experiment

Promising agreement (\pm 30 cm⁻¹), a unique binding geometry is not identified.

Exp. difference spectrum N3/N712

Conclusions:

base-induced desorption of dye adsorbed in the presence of protons
change in binding mode depending on protonation

Suggested binding mode

Computed self-assembly of I₂ on anatase(101)

Equilibrium between two Configurations (pH dependent)

Experimental data consistent with self-assembly:

•Dense packing

- •Dimers in STM (rutile)
- Desorption with base

F. Schiffmann, J. VandeVondele, J. Hutter, R. Wirz, A. Urakawa, A. Baiker, J. Phys. Chem. C

Including the electrolyte

Electrolyte near the interface

Atomistic

Continuum

I⁻ concentration profiles

~microsecond simulation time (classical MD)

The molecular structure of the liquid near the interface is required to obtain a qualitatively correct ion distribution

Dye - Iodide interaction

DFT calculations of complex formation. Free energies of binding in explicit solution.

 I^{-} , I_{2}^{-} form stable complexes in solution SCN⁻ group essential in complex formation

Dye regeneration

non-trivial: 2 Ru(III) + 3 $I^- \rightarrow 2$ Ru(II) + I_3^-

[Dye:I₂] and [Dye:I] complexes formed.

F. Schiffmann, J. VandeVondele, J. Hutter, A. Urakawa, R. Wirz, A. Baiker, Proc. Natl. Acad. Sci. (2010)

Recent developments

Full linear scaling GGA DFT

Efficiently using hybrid functionals

Linear scaling GGA DFT

Linear Scaling SCF

Traditional approaches to solve the selfconsistent field (SCF) equations are O(N³) limiting system size significantly.

A newly implemented algorithm is O(N), allowing for far larger systems to be studied.

Largest O(N³) calculation with CP2K (~6000 atoms) -nn 22nm 11 2201 22nm Largest O(N) calculation with CP2K (~1'000'000 atoms)

Linear Scaling SCF

New regime: small devices, heterostructures, interfaces, nano-particles, a small virus.

Solvated STMV: 1M

Theoretical and Computational Biophysics Group Beckman Institute University of Illinois at Urbana-Champaign

With Mathieu Luisier

1.5M atoms Anatase nanocrystal

Caplovicova et al. App. Cat. B, 224, 117

Sign matrix iterations

The density matrix (P) is function of H

$$P = \frac{1}{2}(I - \operatorname{sign}(S^{-1}H - \mu I))S^{-1}.$$

A simple iterative scheme (Newton-Schultz) gives sign(A):

$$X_{n+1} = \frac{1}{2}X_n(3I - X_n^2).$$

Using only sparse matrix matrix multiplies (not SPMV!) linear scaling can be obtained

A dedicated sparse matrix multiply library is extremely important This library is being ported to GPUs

Millions of atoms in the condensed phase

Bulk liquid water. Dashed lines represent ideal linear scaling.

VandeVondele, Borstnik, Hutter, JCTC, DOI: 10.1021/ct200897x

DBCSR: a sparse matrix library

Distributed Blocked Compressed Sparse Row Distributed Blocked Cannon Sparse Recursive

Borstnik et al. : in preparation

Towards O(1): constant walltime with proportional resources

Stringent test: Small blocks, large overhead Very sparse matrices Running with 200 atoms / MPI task

Local multiplies constant (OK!).

Overhead & Communication Grows with sqrt(N) Needs a replacement for Cannon

Work is underway to replace the Cannon algorithm with something new! Retain the sqrt(N) max comm, yield constant comm in the limit.

Hybrid functionals

Advances in DFT

Exchange and correlation functionals of improving can be constructed by adding new ingredients:

Dispersion / van der Waals corrected functionals (Screened) Hybrid functionals

Goerigk, L. and Grimme, S. Phys. Chem. Chem. Phys. (2011) 13, 6670-6688. Mundy, Kathmann, Rousseau, Schenter, VandeVondele, Hutter, SCIDAC reviews (spring 2010).

Hartree-Fock exchange

$$E_x^{\rm HF} = -\frac{1}{2} \sum_{\alpha\beta\gamma\delta} P_{\alpha\beta} P_{\gamma\delta}(\phi_{\alpha}\phi_{\gamma}|\phi_{\beta}\phi_{\delta})$$

$$(\phi_{\alpha}\phi_{\gamma}|\phi_{\beta}\phi_{\delta}) = \int d\mathbf{r}d\mathbf{r}' \frac{\phi_{\alpha}(\mathbf{r})\phi_{\gamma}(\mathbf{r})\phi_{\beta}(\mathbf{r}')\phi_{\delta}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$$

An easy term in Gaussian basis sets, but brute force scaling as O(N⁴)

$$O(N^{4}) \rightarrow O(N)$$

$$E_{x}^{HF} = -\frac{1}{2} \sum_{\alpha\beta\gamma\delta} P_{\alpha\beta} P_{\gamma\delta}(\phi_{\alpha}\phi_{\gamma}|\phi_{\beta}\phi_{\delta})$$

$$(\phi_{\alpha}\phi_{\gamma}|\phi_{\beta}\phi_{\delta}) = \int d\mathbf{r}d\mathbf{r}' \frac{\phi_{\alpha}(\mathbf{r})\phi_{\gamma}(\mathbf{r})\phi_{\beta}(\mathbf{r}')\phi_{\delta}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Based on the fact that for large systems either the integrals Or the density matrix become zero (to within a threshold eps)

Cauchy-Schwarz screening

Density matrix screening Operator screening

$$|(ab|cd)| \le \sqrt{(ab|ab)|(cd|cd)} \qquad O(N^2)$$

$P_{\alpha\beta}$ decays exponentially	O(N)

Operators other than 1/r O(N)

O(N) HFX: measurements

Linear scaling is key thousands of molecules possible On 'standard' cluster hardware in minutes.

In-core integral compression

Almost all simulations are performed using an in-core algorithm
 → 10x speedup is observed.
 Highly efficient scheme: index free and lossy compression

Guidon, M; Schiffmann, F; Hutter, J; VandeVondele, J. 2008 ; JCP 128(21): 214104

Parallel efficiency

HFX remains computationally much more demanding than GGA DFT (10x?) A good parallel implementation is mandatory

10 steps of MD, 64 H₂O, 2560 BF, OpenMP: 8 threads/node

HFX code out-scales the Remaining (GGA) part of CP2K

Provided enough compute power, Hybrid simulations run essentially as fast as GGA (9s / BOMD step @ 4096 cores)

Robust Hartree-Fock exchange in the condensed phase

$$E_x^{\text{PBC}} = -\frac{1}{2N_k} \sum_{i,j} \sum_{\mathbf{k},\mathbf{k}'} \int \int \psi_i^{\mathbf{k}}(r_1) \psi_j^{\mathbf{k}'}(r_1) g(|r_1 - r_2|) \psi_i^{\mathbf{k}}(r_2) \psi_j^{\mathbf{k}'}(r_2) d^3 r_1 d^3 r_2$$

How to treat this expression, k=k' is only conditionally convergent for g(r)=1/r?

This 'difficult' point is integrable, but what for a Gamma-point code (k=k'=0)?

$$g_{TC}(r_{12}) = \begin{cases} rac{1}{r_{12}}, \ r_{12} \leq R_c \\ 0, \ r_{12} > R_c \end{cases}$$

Avoids spurious self-exchange interactions with images in other cells. This can be implemented robustly in a simple way.

Truncated Coulomb: Needs, Alavi

LiH: demonstrating robustness & accuracy

A real benchmark system... a challenge inspired by the success of Quantum Chemistry

what is the final answer (i.e. many digits) for the HFX cohesive energy of LiH?

High quality basis (39000 functions for 5x5x5=1000 atoms)						
()	$R_c[\text{\AA}]$	E(HF)[a.u.]	H[a.u.](a)	Li[a.u.](b)	$arepsilon_{HF}^{coh}$ [a.u.]	
2x2x2	4.0	-32.244609	-0.499957	-7.428493	-0.132702	
3x3x3	6.0	-32.256844	-0.499974	-7.432137	-0.132100	
4x4x4	8.0	-32.258022	-0.499974	-7.432582	-0.131949 —	→ vs0.13195 by
5x5x5	10.0	-32.258179	N/A	N/A	N/A	Gillan, Manby, et al
5	V	▼ s32.258171	by Scuseria	et al	1072 - 55536 -	

speedup

Highly accurate calculations at the basis set limit, at gamma are possible... also for systems containing 1000 atoms

```
Paier J; Diaconu CV; Scuseria GE; Guidon M; VandeVondele J;
Hutter J. 2009: PRB 80(17): 174114
Guidon M; Hutter J; VandeVondele J. 2009: JCTC 5(11): 3010-3021
```


The curse of HFX: The Basis

Good quality calculations need good quality basis sets

Increasing the quality of the basis steeply $[O(N^4)]$ increases the cost of HFX

 $\left\{ \right\}$

1st HFX step for 20 water molecules on 128 cores

basis	$\kappa(S)$	threshold	cost [ERIs]	cost [s]	
3-21G*	4.9E+01	1.0E-04	2.3E+07	0.06	
6-31G**	2.1E+02	1.0E-05	5.2E+08	0.35 —	Most commonly used basis
6-311G++G**	1.2E+05	1.0E-07	1.1E+10	11.71	5
pc-0	5.2E+01	1.0E-04	1.7E+07	0.07	
pc-1	4.5E+03	1.0E-05	4.4E+08	0.50	good' results
pc-2	5.7E+05	1.0E-07	2.0E+10	11.21	
aug-pc-1	1.4E+06	1.0E-08	5.0E+10	53.23	
aug-pc-2	3.9E+08	1.0E-09	1.5E+12	766.92 🔍	
def2-QZVP	7.1E+04	1.0E-08	3.2E+11	127.16	
aug-def2-QZVP	8.5E+05	1.0E-08	6.2E+11	331.61	'Converged' results

Auxiliary Density Matrix Methods (ADMM)

For certain density matrices HFX can be computed very efficiently (e.g. small basis sets or increased sparsity)

Transform an expensive matrix into a cheap one, use a GGA for estimating the difference

$$\begin{split} E_x^{\mathrm{HFX}}[P] &= E_x^{\mathrm{HFX}}[\hat{P}] + \left(E_x^{\mathrm{HFX}}[P] - E_x^{\mathrm{HFX}}[\hat{P}]\right) \\ &\approx E_x^{\mathrm{HFX}}[\hat{P}] + \left(E_x^{\mathrm{DFT}}[P] - E_x^{\mathrm{DFT}}[\hat{P}]\right) \end{split}$$

One example: wavefunction fitting, using an auxiliary basis

$$\min_{\tilde{C}} \left[\sum_{j} \int \left(\psi_{j}(\mathbf{r}) - \tilde{\psi}_{j}(\mathbf{r}) \right)^{2} d\mathbf{r} + \sum_{k,l} \Lambda_{kl} \left(\int \tilde{\psi}_{k}(\mathbf{r}) \tilde{\psi}_{l}(\mathbf{r}) d\mathbf{r} - \delta_{kl} \right) \right]$$

Guidon M; Hutter J; VandeVondele J; JCTC 6(8): 2348-2364

ADMM: accuracy

- GTMKN24 (>1000 datapoints)
 - using FIT3 and pFIT3 auxiliary basis sets
 - Error wrt to Exp. : identical (5.0 kcal/mol)
 - Error wrt to Ref. : < 1 kcal/mol
- BSSE tests
 - BSSE reduced by 5x compared to no ADMM
 - H₂O dimer: 0.5 kcal/mol FIT3, 0.2 kcal/mol aug-FIT3

ADMM: performance

STD DZVP-MOLOPT-SR-GTH

ADMM: MOLOPT/FIT3

ADMM: MOLOPT/EMBED

A8'000 cores
A8'000 cores
SCF step: 45 min
subsequent steps: 25 s
6.8 TB RAM
In SCF step: 25 s
S.2 GB RAM

A fully solvated protein computed within minutes using hybrid functionals

Guidon M; Hutter J; VandeVondele J; JCTC 6(8): 2348-2364

IR spectroscopy from AIMD with hybrid functionals

1400 1331 1325 $\delta_a(H)$ 1253 1241 1213 1200 1153 1156 $v_{a}(PO)$ 1120 1121 1077 1068 1078 1045 1078 ν_«(PO) 1000 ₹ / cm⁻¹ 944 v_a(PO_H) 928 879 v_(PO_) 810 800 600 δ(OPO 512 521 518 400 **B3LYP B3LYP** BLYP BLYP exp. sol. sol. vac. vac.

 H_2PO4^{-1}

H₂PO₄⁻ in explicit water

~ 100 ps AIMD / 64 waters

Both Hybrids and GGA capture the main effect of solvation. Hybrid give 2x more accurate spectra

VandeVondele et al. JPCA

Phosphate in solution

Analyzing the amount of charge transfer in $H_2PO_4^{-}$ and HPO_4^{-} : Reduced charge transfer is observed with hybrid functionals, but only for the double anion.

The effect is partially electronic, partially geometric

VandeVondele et al. Submitted

Acknowledgements

CP2K Team

Zürich

Juerg Hutter Manuel Guidon Urban Borstnik Mauro Del Ben Florian Schiffmann Atsushi Urakawa Ronny Wirz Alfons Baiker

<u>Cambridge</u>

Michiel Sprik Marialore Sulpizi Jun Cheng

PNL&Minnesota

Chris Mundy Roger Rousseau Ilja Siepmann

<u>München</u>

Paul Tavan Gerald Matthias

UCL&EPCC&CRAY

lain Bethune Matt Wattkins Ben Slater John Levesque

You for your attention!

Flops&More CSCS UZH SNF INCITE EU-FP DEISA PRACE