Кремний и его применения в нанотехнологиях

Тимошенко Виктор Юрьевич

Московский Государственный Университет имени М.В.Ломоносова Физический факультет Научно-образовательный центр по нанотехнологиям

Содержание

- I. Введение: нанотехнологии, нанофизика, наноэлектроника.
- II. Квантовый размерный эффект.
- III. Эмиссия света из структур кремниевых квантовых точек.
- IV. Перенос энергии в структурах кремниевых нанокристалов, легированных эрбием.
- V. Новые оптические среды на основе пористого кремния.
- VI. Биомедицинские применения нанокристаллов кремния.

Введение

- В 1959 г. Нобелевский лауреат по физике Ричард Фейнман прочитал лекцию с аллегорическим названием "Внизу полным-полно места" (There is plenty of rooms at the bottom. In minituarization).
 Р.Фейнман рассказал аудитории о фантастических перспективах, которые сулит изготовления материалов и устройств на атомном и молекулярном уровнях.
- 2. Почему нанотехнологии? Оказывается, многие свойства твердых тел (температура плавления, электропроводность, область прозрачности, магнетизм и др.) при уменьшении кристалла до размеров 10-20 нм и меньше начинают зависеть от размера частицы. Таким образом, появляется возможность создавать новые материалы не путем изменения химического состава компонентов, а в результате регулирования размеров и формы частиц, составляющих систему.

Эмиссия света из кремниевых квантовых точек И оптоэлектронные применения

Кремний и оптоэлектроника

Кремний (c-Si) в различных своих формах (кристаллический, поликристаллический, аморфный) является основой современной микроэлектроники и фоточувствительной оптоэлектроники (фотовольтаики).

с-Si имеет кубическую решетку, ширину запрещенной зоны Eg=1.17 эВ (T=4 K), хорошо изученные и управляемые электрические и фотоэлектрические свойства. На его основе делаются основные компоненты микроэлектроники и фотовольтаики.

Но эффективность излучательной рекомбинации в чистом с-Si очень низкая ввиду непрямозонной природы оптических переходов.

Эффективность излучательной рекомбинации можно увеличить, формируя нанокристаллы с размерами 2-3 нм.

Нанокристаллы Si в матрице SiO₂

M. Fujii et al., J. Appl. Phys. 84, 4525 (1998).

M. Zacharias et al., APL 80, 661 (2002).

Спектры фотолюминесценции нанокристаллов кремния (nc-Si) в матрице SiO₂

Положение полосы фотолюминесценции определяется средним размером нанокристаллов Si в SiO₂ матрице, что можно объяснить квантовым размерным эффектом с учетом кулоновского взаимодействия электронов и дырок в нанокристаллах (экситонные эффекты).

Интеграция опто- и наноэлектроники

- 4. Известно, что между интегральными схемами в устройствах и между отдельными элементами интегральных схем связь чисто электрическая. Так в процессоре, содержащем до 10⁸ транзисторов, длина проводников составляет 20 км. Это не самые надежные участки схемы, и было бы неплохо хотя бы часть из них заменить оптическими линиями.
- Как все-таки заставить кремний излучать свет при электрическом или оптическом возбуждении. Есть два пути:

а) создать ансамбль наночастиц кремния и вследствие принципа неопределенности Гейзенберга ΔP·Δx~ћ закон сохранения импульса становится не столь строгим и вероятность переходов растет (~d⁻⁵).

б) ввести примеси активаторы люминесценции, например, редкоземельных элементов. Весьма перспективным является Er^{3+,} дающий узкую линию в области 1.5 мкм.

Контролируемые по размеру нанокристаллы Si в nc-Si/SiO₂ сверхрешетках

·建安·南京的小学家 山田市 ·南方小学社 化 的产生 化 的过去分词 化学会 多 操心的 经济 trick second from 的一次 原始 merinal states West and all all all we are an all an all an all an 建立用 海南 南京 金田山村 李 金田田 和此代达 Sector & North B. 18 Description of the sector And A state of the second states and the state of the second with the second

M. Zacharias et al., APL 80, 661 (2002).

Preparation Details:

- 1. Alternating evaporation of SiO powder in vacuum 10^{-7} mbar or in oxygen atmosphere under oxygen partial pressure of 10^{-4} mbar. This changes the stoichiometry *x* of SiO_x alternatively between 1 and 2.
- SiO/SiO₂ superlatticies are characterized by the thickness of the SiO layers varied between 1 and 3 nm and the thickness of SiO₂ layers between 2 and 3 nm. The number of periods varied between 30 and 90.
- The evaporated samples were annealed at 1100 °C under N₂ atmosphere. Thus nc-Si/ SiO₂ superlattices were obtained.
- Er doped nc-Si/SiO₂ superlattice were produced by implantation with Er ions (energy 300 keV, doses 10¹⁴ – 5·10¹⁶ cm⁻²) followed by TA at 900 °C for 5-60 minutes.

Er

Люминесценция легированных эрбием структур кремниевых нанокристаллов

Передача энергии от нанокристаллов Si к ионам Er может быть использована для создания светодиодов, лазеров и оптических усилителей на длине волны 1.5 мкм

Эмиссия света из кремниевых наноструктур возможна!

Минимум потерь оптических волоконных линий связи 1.5 µm

Siana

совместимые с планарной кремниевой технологией

Некоторые выводы

- 1. Использование нанотехнологий позволяет в широких пределах изменять электронные и оптические свойства полупроводниковых нанокристаллов.
- 2. Системы, содержащие кремниевые нанокристаллы в диэлектрической матрице, являются перспективными для создания светоизлучающих устройств, совместимых с технологией интегральных схем.
- Легирование структур кремниевых нанокристаллов ионами редкоземельных металлов позволяет реализоваться уникальному процессу практически полной передачи энергии экситонов на внутренние степени свободы ионов.

Новые оптические среды на основе пористого кремния

Введение

Почему именно наноструктурирование необходимо для создания новых оптических материалов?

- Идея о том, что наноструктурирование однородных и изотропных сред может привести к новым оптическим свойствам, была предложена еще много лет назад. (см. М. Борн, Э. Вольф "Основы оптики"). Однако только в наше время появились технологии для создания наноструктурированных материалов.
- Для получения оптически однородной среды размеры структурных элементов и расстояние между ними должно быть много меньше длины волны.
- Изменение оптических свойств полупроводника при формировании наноструктур и их ансамблей с характерными размерами 1-10 нм может быть вызвано:
 - Размерными эффектами
 - Поверхностными эффектами (новые электронные и фононные уровни)
 - Локальными полями, зависящими от формы наноструктур и их числа

Наноструктурирование полупроводников методом электрохимического травления

Впервые получили пористый кремний А. Улир и его жена в 1955.

A. Uhlir, Electrolytic shaping of germanium and silicon, Bell Syst. Tech., 1956, v.35, no.2, pp.333-347.

•Огромная удельная поверхность (до 1000 м²/г)

•Возможность формирования наноструктур с размерами 1-100 нм

•Интенсивная фотолюминесценция (квантово-размерный эффект)

•Простота изготовления

Мезо- и микропористый кремний как примеры наноструктурированных полупроводников

Вид ПК	Размер пор
Микропористый	≤ 2 нм
Мезопористый	2-50 нм
Макропористый	>50 нм

Mesoporous Silicon

Mesoporous Si is characterized more ordered structure of pores and nanocrystals

Microporous Si exhibits stronger confinement for charge carriers and photoluminescence Because of smaller Si nanocrystals

Microporous Silicon

Экситон в пористом кремнии: влияние размеров, поверхности и диэлектрической проницаемости

Захват на поверхностные состояния и безызлучательная рекомбинация

$$\tau_{nr} = \tau_{nr}^0 \exp\left(\frac{E_a}{kT}\right)$$

Молекулы на поверхности нанокристаллов (М) влияют на их зарядовое состояние. Параметры экситонов N_{ex} , E_{ex} , $h_{V_{PL}}$ и τ_r зависят от d, N_M , ε_i , ε_e

Расчетные значения энергии связи экситонов E_{ex} в кремниевых квантовых нитях, окруженных диэлектрической средой с ε_e

III. Влияние диэлектрической проницаемости среды на энергию связи и концентрацию экситонов

Экспериментальное исследование фотолюминесценции пористого кремния

Экспериментальные и расчетные спектры ФЛ хорошо согласуются. Наблюдается линейная зависимость интенсивности ФЛ с ростом интенсивности возбуждения, что находится в согласии с моделью.

Пористый кремний как эффективная оптическая среда

Управление величиной показателя преломления пористого кремния

Приближение эффективной среды (модель Бругемана)

є ^{eff} для неупорядоченной гетерогенной смеси:

$$P\frac{\varepsilon_{d}-\varepsilon^{eff}}{\varepsilon_{d}+2\varepsilon^{eff}}+(1-P) \frac{\varepsilon_{Si}-\varepsilon^{eff}}{\varepsilon_{Si}+2\varepsilon^{eff}}=0$$

где Р-пористость

Показатель преломления:

$$n = \sqrt{\mathcal{E}^{eff}}$$

Одномерные фотонные кристаллы на основе пористого кремния

Идеальное брэгговское зеркало

Условие Брэгга:

Образец 1D фотонного кристалла на основе пористого кремния

Спектры отражения одномерных фотонных кристаллов на основе пористого кремния

L. Golovan et al., JETP Lett. (1998).

Оптическая анизотропия пленок пористого кремния с ориентацией поверхности (100) и (110)

Positive crystal ($n_e > n_o$)

Negative crystal ($n_o > n_e$)

Электронная микроскопия (110) слоев пористого кремния

Поры (светлые области) и кремниевые нанокристаллы показывают преимущественную ориентацию в плоскости слоя в направлениях [001] и [1 10]

Влияние плотности тока анодирования на двулучепреломление пористого кремния

For layers prepared
at j =100 mA/cm²:
$$\Delta n=0.24$$

 $\langle n \rangle = (n_o+n_e)/2 = 1.3$
 $\delta n=\Delta n/\langle n \rangle = 0.18$
at $\lambda=1-10 \ \mu m$

medium	Δn
Crystalline Si	$5 \cdot 10^{-6}$
Iceland Spar(CaCO ₃)	0.15
Por-Si (110)	0.24

Анизотропные аноструктурированные слои пористого кремния обладают сильным двулучепреломлением, большим, чем, например, в исландском шпате, и в более широком спектральном диапазоне !

Фотонные кристаллы с поляризационно перестраиваемой запрещенной зоной

Применения анизотропного пористого кремния

- •Волновые пластинки ($\lambda/2$, $\lambda/4$: λ =0.5-8 µm и 12 µm $\rightarrow \infty$)
- •Фазовосогласующие среды для генерации гармоник
- •Дихроичные зеркала
- •Плоские «окна Брюстера»

Образцы дихроичных 1D-фотонных кристаллов из анизотропно-наноструктурированного кремния

Некоторые выводы

- Искусственные среды с требуемыми оптическими свойствами могут быть сформированы путем наноструктурирования гомогенных изотропных материалов методом электрохимического травления.
- 2. Высококачественные одномерные фотонные кристаллы на основе пористого кремния имеют ярко выраженную запрещенную зону в видимом или ближнем ИК диапазоне, что позволяет компенсировать дисперсию материала для достижения условий фазового согласования в процессах волнового смешения.
- Анизотропный пористый кремний является отрицательным одноосным кристаллом с огромной величиной двулучепреломления. Подобные слои могут использоваться в качестве сред для фазового согласования нелинейно-оптических взаимодействий.
- 4. Анизотропное наноструктурирование полупроводников открывает широкие возможности для изготовления искусственных сред с новыми оптическими свойствами для различных приложений в фотонике (поляризаторы, фазокомпенсирующие пластины, дихроичные зеркала, плоские "окна Брюстера").

Биомедицинские применения нанокристаллов кремния

Некоторые физико-химические свойства кремния (Si) для применений в биомедицине

- Распространенность (Si второй после кислорода элемент по распространенности в земной коре, где его доля составляет около 27 %).
- Биосовместимость (в организме здорового человека весом 50-70 кг содержится 0.5-1 г Si, что делает его 3-м по содержанию микроэлементом после железа и цинка).
- Биодеградируемость кремниевых наночастиц (Si в виде наночастиц растворяется в организме человека со скоростью от 1 нм (кислая среда) до 1000 нм (щелочная среда) в день с образованием ортокремниевой кислоты).
- Доступная технология получения нанопористых форм кремния позволяет управлять размерами гранул и степенью их пористости.
- Однако, многие формы нанокремния гидрофобны, что затрудняет получение их водных суспензий и требует дополнительной обработки для придания материалу гидрофильных свойств.

Какие наночастицы могут быть перспективны для фотодинамической терапии (ФДТ) ?

Металло-оксиды (TiO₂, ZnO,...):

-поглощение в коротковолновой видимой или УФ области спектра;

-преимущественно генерируются анион-радикалы O2- .

A²B⁶ (CdTe, CdSe, ZnSe, CdSe/CdS, ...):

- поглощение в видимой области спектра;
- стабильные водные суспензии;
- высокий квантовый выход ФЛ (10-30%);
- короткие (1-100 нс) времена собственной излучательной рекомбинации;
- нет убедительных данных по генерации синглетного кислорода;
- возможна темновая цитотоксичность.

A⁴ (Ge, **Si**)

- поглощение в видимом и ближнем ИК диапазоне спектра;
- невысокий квантовый выход ФЛ (0.1-10%);
- длинные (1-100 мкс) времена собственной излучательной рекомбинации.

Прямое оптическое возбуждение O_2 неэффективно \rightarrow необходим фотосенсибилизатор

•Кислородно-иодный лазер •Фотодинамическая терапия рака (ФДТ)

- Окисление нежелательной органик

- Применения синглетного кислорода:
- $S(O_2) + S(Mol.) \longrightarrow S(Mol.)$
- химически активны:
- имеют большую энергию
- СИНГЛЕТНЫ ПО СПИНУ (S=0)

Возбужденные состояния:

для химической реакции: $T(O_2) + S(Mol.) \rightarrow S(Mol.)$

- парамагнитно
- триплетно по спину (S=1)

• необходима активация

Основное состояние:

Электронные уровни энергии в молекуле О₂

Нанокристаллы Si в пористом кремнии

A.G.Cullis, L.T.Canham, Nature (1991)

•Простой метод электрохимического травления

- Зависящая от размеров (пористости) полоса люминесценции
- •Триплетные и синглетные состояния экситонов

D. Kovalev et al., Phys. Stat. Sol. (1999)

Порошок из нанокристаллов кремния, полученных по технологии пористого Si

2 nm

АСМ изображения отселектированных по размерам нанокристаллов Si

tn_100_2akk_sio2.000a.dtf

Средний размер нанокристаллов - **3.6 нм** Среднеквадратичное отклонение - **0.4 нм**

Передача энергии от экситонов в нанокристаллах Si к молекулам O₂

Генерация синглетного кислорода в водных суспензиях нанокристаллов кремния

for $\tau_{SO} \sim 1-3 \ \mu s$: $N_{SO} \sim 10^{15} - 10^{16} \ (1/cm^3)$

Зависимость эффективности фотосенсибилизации от пористости порошка нанокристаллов Si

760 Torr of O₂, $I_{exc} = 10^{19} / cm^2$, $\alpha \sim 10^3 \text{ cm}^{-1}$ Transfered Energy of Excitons: $\eta_E = 1 - I_{PL}^{oxyg} / I_{PL}^{vac} \sim 0.7$ Generation Rate: $G = \eta_E \eta_{PL} \alpha I_{ex} \sim 10^{21} (1/cm^3 \cdot s)$ for $\tau_{SO} \sim 1 \text{ ms}$: $N_{SO} = G \tau_{SO} \sim 10^{18} (1/cm^3)$

Водные суспензии nc-Si

+

2 ml

 H_2O

50 мг nc-Si

Область фотолюминесценции после лазерного возбуждения на длине волны 337 нм

Влияние нанокристаллов Si на пролиферацию раковых клеток (*in vitro* experiments with mouse fibroblasts)

V.Yu. Timoshenko et all., JETP Lett. 83 (2006).

Распределение по размерам в водных суспензиях пористых наночастиц Si

Средний размер наночастиц в свежеприготовленных водных суспензиях:

- 1 образец 220 нм
- 2 образец 600 нм

Средний размер наночастиц в водных суспензиях после центрифугирования: **20 нм**

Биодеградируемые наноконтейнеры из пористых наноструктур кремния

- I. Капсулирование лекарства в наноконтейнере из пористого кремния.
- II. Доставка заряженного наноконтейнера в ткани и клетки.
- III. Растворение кремниевой матрицы и высвобождение лекарства.

Выводы

- 1. Использование нанотехнологий позволяет в широких пределах изменять свойства привычных веществ.
- 2. Нанокристаллы Si (nc-Si) обладают огромной удельной поверхностью, эффективной фотолюминесценцией, являются сенсибилизаторами генерации синглетного кислорода, а также являются биодеградируемыми в организме человека.
- 3. В темновых условиях нанокристаллы Si не влияют на деление клеток животных и человека до концентраций порядка 1 г/л.
- 4. При интенсивном освещении обнаружено подавление пролиферации раковых клеток фибробластов мыши при контакте с фотовозбужденными nc-Si.
- 5. Полученные результаты указывают на возможность использования пористых структур nc-Si также для доставки лекарств и терапии на клеточном уровне.

Спасибо за внимание!

