Введение в рентгеновскую дифракцию

Е.В. АнтиповХимический факультет МГУ

Литература:

- 1. V.K. Pecharsky & P.Y. Zavalij "Fundamentals of Powder Diffraction and Structural Characterization of Materials"
- 2. А. Вест Химия твёрдого тела, т.1.
- 3. Л.М. Ковба, В.К. Трунов «Рентгенофазовый анализ»
- 4. "The Rietveld method" (Edited by R.A.Young)
- 5. "Structure Determination from Powder Diffraction Data" (Edited by W.I.F. David *et al.*)
- 6. www.ccp14.ac.uk

 K_{α} - излучение 2p → 1s K_{β} - излучение 3p → 1s

Закон Мозли (для К-серии): 1/λ=R(Z-1)²×(1-1/n²) см⁻¹ R=109737 (конст.Ридберга) n=2,3....

Характеристическое излучение:

I=αi(U-U₀)ⁿ для U<4U₀ U₀ - потенциал возбуждения U - напряжение на трубке i - сила тока

1.6<n<2

Белое излучение:

I=kiU²Z

Для медного излучения $U_0 \approx 9 \text{ kV}$

Спектр испускания рентгеновских лучей

Cr 2.289700 Å

Выбор излучения и фильтра

a, c - правильно; b - неправильно; d - выбор фильтра

 $\lambda_{\beta} < \lambda_{\phi u \pi} < \lambda_{\alpha}$ - условие выбора фильтра

<u>Рентгенограмма</u> - набор межплоскостных расстояний (d, Å) и соответствующих интенсивностей (I)

!	D	2Theta	I(rel)	I(abs)	I(int)	FWHM	Η	K	L	
		C 1001	2 0 4	2.2	7 (0	0 1 7 0 1	0	1	0	
-	L4.248472	6.1981	3.04	33	/.68	0.1/81	0	Ţ	0	
	9.814859	9.0027	6.16	66	14./8	0.1694	Ţ	0	0	
	9.587812	9.2164	2.66	28	6.36	0.1688	1	1	0	
	7.140107	12.3866	4.38	47	9.89	0.1596	-1	1	0	М
	5.121028	17.3024	24.07	258	50.16	0.1472	-1	-1	1	
	4.758203	18.6331	25.94	278	52.98	0.1443	0	1	1	
	3.736961	23.7913	68.18	729	130.34	0.1350	0	-3	1	

2d sin θ =n λ θ = зависит от λ

AB+BC=nλ AB=BC= d_{hkl} sinθ $2d_{hkl}$ sinθ=nλ $2d_{100}$ sinθ=2λ \downarrow

$$\lambda = 2d_{hkl} \sin \theta$$

(a)

Элементарная ячейка – это условно выбранный трехмерный полиэдр, основанный на трех некомпланарных векторах, смещение которого на величину и в направлении любого из этих векторов показывает среднее расположение атомов в новой ячейке.

Какой же из них?

Правила выбора элементарной ячейки

- 1. Симметрия ячейки такая же, как и симметрия решётки
- 2. Число прямых углов максимально
- 3. Объём минимальный при соблюдении 1 и 2.

Решётки Бравэ

- 1 триклинная
- 2,3 моноклинная
- 4-7 (орто)ромбическая
- 8,9 гексагональная
- 10,11 тетрагональная
- 12-14 кубическая

Дополнительные трансляции в кубической ячейке

Разные структуры с одинаковой решёткой Бравэ

Соотношение параметров и углов элементарных ячеек для различных сингоний

Симметрия	Соотношения параметров
триклинная	$a \neq b \neq c \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
моноклинная	$a \neq b \neq c \alpha \neq \beta \neq 90^{\circ} \gamma = 90^{\circ}$
ромбическая	$a \neq b \neq c \alpha = \beta = \gamma = 90^{\circ}$
гексагональная	$a=b \neq c \alpha = \beta = 90^{\circ} \gamma = 120^{\circ}$
тетрагональная	$a=b \neq c \alpha = \beta = \gamma = 90^{\circ}$
кубическая	$a=b=c \alpha=\beta=\gamma=90^{\circ}$

14 решёток Бравэ						
+						
элементы симметрии						
230 пространственных						
групп						
Симметрия	Типы центрировки					
триклинная	Р					
моноклинная	P, C					
ромбическая	P, C, I, F					
гексагональная	P, R					
тетрагональная	P, I					
кубическая	P, I, F					

Индексы Миллера

Плоскости с максимальными d в кубических ячейках

 $d_{111} = \frac{\alpha \sqrt{3}}{3}$

F

Рентгеновские дифракционные методы

ΦΟΤΟ

Рентгеновские камеры

Дебая-Шерера Гинье

Гандольфи (Монокристальные камеры)

Дифрактометры

СЧЁТЧИК

Геометрия: на отражение на прохождение Гинье-тип Дебая Шерера-тип (Монокристальные)

$$\frac{S}{2^{\pi}R} = \frac{4^{\theta}}{360}$$

Выбор длины волны для порошкового эксперимента

Mo, Cu, Fe ???

Влияние типа излучения на вид рентгенограммы

Качественный РФА

Область применения:

Идентификация известных соединений. Построение фазовых диаграмм. Поиск новых соединений. Контроль технологических процессов

Количественный РФА

$$I_{\underline{i}\alpha} {=} K_{\underline{i}\alpha} X_\alpha {/} \mu_\rho$$

I_{іα} - интенсивность линии на рентгенограмме;

К_іα - константа, зависит от структуры, экспериментальных условий и т.д.

 X_{α} - весовая доля вещества α ;

μ_о - массовый коэффициент поглощения смеси.

Количественный анализ полиморфизма ZrO₂

Определение параметров элементарных ячеек

где:

d_{*hkl*} - межплоскостное расстояние

$$a^{*} = \frac{bc\sin^{\alpha}}{V} \qquad b^{*} = \frac{ca\sin^{\beta}}{V} \qquad c^{*} = \frac{ba\sin^{\gamma}}{V} \\ \begin{cases} Ah_{1}^{2} + Bk_{1}^{2} + Cl_{1}^{2} + Dh_{1}k_{1} + Ek_{1}l_{1} + Fh_{1}l_{1} = Q_{1} + \varepsilon_{1} \\ Ah_{2}^{2} + Bk_{2}^{2} + Cl_{2}^{2} + Dh_{2}k_{2} + Ek_{2}l_{2} + Fh_{2}l_{2} = Q_{2} + \varepsilon_{2} \\ & \dots \\ Ah_{m}^{2} + Bk_{m}^{2} + Cl_{m}^{2} + Dh_{m}k_{m} + Ek_{m}l_{m} + Fh_{m}l_{m} = Q_{m} + \varepsilon_{m}k_{m}^{2} + Ch_{m}k_{m}^{2} + Ch_{m}k_$$

Аналитические методы индицирования
Использование компьютерных программ
Уточнение параметров методом МНК
Анализ систематических погасаний ⇒ возм. пространственная группа

т

Анизотропное термическое расширение

Изучение фазовых превращений при изменении температуры

Изучение образования твёрдых растворов

Зависимость параметра *с* твердых растворов $Hg_2P_xAs_{3-x}Br$ от состава *x*

Определение кристаллических структур соединений

Определение модели структуры с использованием интегральных интенсивностей или других методов

Исследование кинетики фазовых превращений и твёрдофазных реакций

