

Качественный рентгенофазовый анализ (РФА). Базы данных ICDD.

Практические подходы к индицированию дифрактограмм

Павел Чижов

Москва 2010. Курс для 415 группы Химического ф-та МГУ. Лекция 4.

- 1. Физические основы рентгенофазового анализа.
- 2. Базы данных ICDD.
- 3. Практические аспекты РФА.
- 4. Основная задача индицирования
- 5. Уточнение параметров элементарной ячейки
- 6. Индицирование дифрактограмм неизвестных соединений

1. Физические основы РФА.

- 1. Дифракция рентгеновского излучения (РИ) когерентное упругое рассеяние РИ с интерференцией вторичных волн.
- 2. Амплитуда дифрагировавшего РИ пропорциональна Фурье-компоненте электронной плотности.
- Для периодической системы монокристалла Фурье образ состоит из узких максимумов.
- 4. $3D = 3 \Phi y p b e и н д е к са (h, k, l и н д е к сы Миллера).$
- 5. Для порошка 1D проекция 3D картины.

1. Физические основы РФА.

- 1. Распределение $\rho(\mathbf{r})$ уникально для каждого соединения.
- 2. $\rho(\mathbf{r}) \leftrightarrow$ расположение атомов
- От периодичности ρ(r) (параметров ячейки кристалла) зависит положение максимумов.
- 3. От вида функции ρ(**r**) (распределения атомов) внутри ячейки зависит интенсивность максимумов.
- Ключ к РФА интенсивность и положения максимумов. Определить их можно с использованием **профильного анализа**.

$2d_{hkl}\sin\theta = n\lambda$

!	D	2Theta	I(rel)	I(abs)	I(int)	FWHM	Η	K	L	
	14 248472	6 1981	3 04	33	7 68	0 1781	0	1	0	
	9.814859	9.0027	6.16	66	14.78	0.1694	1	0	0	
	9.587812	9.2164	2.66	28	6.36	0.1688	1	1	0	
	7.140107	12.3866	4.38	47	9.89	0.1596	-1	1	0	М
	5.121028	17.3024	24.07	258	50.16	0.1472	-1	-1	1	
	4.758203	18.6331	25.94	278	52.98	0.1443	0	1	1	
	3.736961	23.7913	68.18	729	130.34	0.1350	0	-3	1	

1. Физические основы РФА.

- 1. Дифрактограмма = «отпечаток пальца» кристаллической фазы.
- Дифрактограмма смеси фаз = суперпозиция дифрактограмм отдельных фаз.
- 2. Относительные интенсивности максимумов от разных фаз связаны с содержанием фаз в смеси ключ к количественному РФА.
- 3. Как по виду дифрактограммы определить, что за фазы присутствуют в смеси? **Сравнение с дифрактограммами стандартов.**

A comprehensive database of powder diffraction patterns – ICDD PDF

(see: www.icdd.com)

Release 2005

	PDF-2	PDF-4 +	PDF-4	PDF-4
Entry Source			(Minerals)	(Organics)
Experimental	96,493	96,493	9,083	26,792
FIZ	68,404	59,223	7,507	1,202
CCDC	0	0	0	237,200
NIST	9,802	5,565	70	14
MPDS	0	78,769	1,166	0
Total No. of Data sets	s 174,699	240,050	17,826	265,208

(International Centre for Diffraction Data)

БД PDF-2

- Постоянно редактируется, дополняется и обновляется
- Каждый год добавляется 2,500 экспериментальных и несколько тысяч расчетных рентгенограмм.
 Компьютерный поиск начиная с 1985 г.
- Содержит рентгенограммы чистых фаз
- Выпуск 2010г. содержит > 300,000 активных рентгенограмм
- Contains SINGLE PHASE patterns!!
- Сейчас доступна в двух форматах:
 - CD-ROM диск (основной формат)
 - Книги (Sets 1-51 только

экспериментальные рентгенограммы)

Новая версия базы данных – ICDD PDF-4

Каждому стандарту присваивается уникальный номер: XX-YYY-ZZZZ (шкаф – ящик – номер).

44-258						
SLSD.	d,0	Int.	hkl	d, 0	Int.	hkl
202BL	6.296	26	110	1.9829	22	002
	4.876	$\frac{3}{27}$	020	1.8970	5	150,420
Antimony Bromide Sulfide	4.195	27	120	1.8902	$\frac{2}{12}$	$\frac{112}{241}$
	4.119	9	200	1.8340	15	241,331 401
Rad. CuKa ₁ λ 1.54056 Filter Mono. d-sp Diff.	5.794	10	210	1.6272	~1	401
Cut off 14.7 Int. Diffractometer I/I _{cor} 3.02	3 673	6	011	1 7955	12	411
Ref. Antipov, E., Putilin, S., Shpanchenko, R., Moscow State	3.354	å	111	1.7616	5	250
University, Moscow, Russia. ICDD Grant-in-Aid. (1993)	3.145	9	220	1.7115	<1	151
Sys. Orthorhombic S.G. Pnam(62)	3.023	1	130	1.6774	1	222
a 8.2370(5) b 9.7491(6) c 3.9646(3) A 0.8449 C 0.4067	2.8818	100	121	1.6562	3	431
α β γ Z 4 mp 330d	a a c c a	1.5	201	1 (04)	2	0.00 510
Ref. Ibid	2.8550	15	201	1.6246	$\frac{2}{2}$	060,510
	2.7413	12	211	1.3933	5 1	100,431
$D_x 4.8/6$ D_m SS/FOM F ₃₀ =158(.005,36)	2.0430	10	230	1.5800	1	312 440
Color Orange	2 5136	16	031	1.5656	<1	232
Pattern taken at 26 C. The sample was provided by Shevelkov, A.,	2.0100	10	001	1.0000	-	232
Dikarev, E., Moscow State University, Moscow, Russia. CAS#:	2.4641	4	221	1.5380	3	042
14/94-85-5. Prepared by nearing of storchometric mixture of 50, 5 and ShPr, in goaled gilies tube at 260 C for 10 hours followed by an	2.4369	7	040	1.5266	3	322
and SODI ₃ in scaled since two at 500 C for 10 hours followed by all-	2.4037	12	131	1.5116	1	142,260
crystal cell: $a=8,212$ b=9,720 c=3,963 S G =Pnam $T=4$ [Inuchima	2.3919	9	320	1.4762	<1	351
T Uchinokura K Inn I Annl Phys 74 600 (1985)] Silicon used	2.3366	2	140	1.4692	2	530
as external standard PSC: oP12	2 1002	2	211	1 1100	2	242 222
us externar standard. 1 5 C. 01 12.	2.1992	3	311	1.4408	≤ 1	242,332
	2.0972	0	400	1 3986	<1	360
	2.0374	1	321	1 3779	1	531
	2.0131	5	141	1.3713	2	152
See follwing card.						

Формат «карточки» (записи о стандарте) PDF-2 в WinXPow.

[81-1286]	PDF-2	Sets	1-99	Qua	lity: C		Wav	elengt	h: 1.	540598	
Lead Vana	dium Oxid	e Phos	sphate						<u></u>		
Pb3 (P V	08)										
Rad.: CuK	al (1.540	60)	Filt	cer:			d-sp	: calc	ulated		
I/Icor.:8	.52		Cuto	off:	17.7		Int.	: calc	ulated	L	
Ref.: Cal	culated f	rom IC	CSD usin	ng POW	D-12++,	(1997)					
Sys.: Rho	mbohedral	S	5.G.: R-	-3m (1	66)		V (redu):	187.6	;	
a: 5.6441	0(20) b			c:	20.4031	.0(60)	C: 3.614	9			
A:	В	:		C:			Z: 3	mp:			
Dx: 7.35	7 Dm	:		SS/I	FOM: F30)= 999.9	(.0001,	33)			
ICSD: 07	2664										
Ref.: Kia 10	t, J M. 3, (1993)	, Garr , 490	nier, P	., Cal [.]	varin, G	S., Pino	t, M., J.	Solid	l State	e Chem.	
ea:	nwB	:		ey:		Sign:	2V:		<u></u>	<u></u>	
REM	REM TEM 300. // REM RVP.										
Hanawalt:	3.13/X 2	.82/8	4.75/3	3.53/	3 2.10/3	3 1.68/2	1.88/1 2	.20/1	1.77/1	1.63/	
Max-d:	6.80/1 4	.75/3	4.41/1	3.53/	3 3.40/1	3.13/X	2.82/8 2	.61/1	2.50/1	2.43/	
d[A]	2Theta	Int.	h	k l		d[A]	2Theta	Int.	h	k l	
6.8010	13.007	10	0	0 3		1.3602	68.986	6	0	0 15	
4.7534	18.652	326	1	0 1		1.3527	69.425	7	1	3 1	

«Подбазы» БД PDF-2 (на примере ящиков 42 и 50).

Sub-File	Entries	Sub-File	Entries
Inorganic	43.308	Zeolites	626
Organic	16.539	Explosives	149
Metals and Alloys	11.630	Polymers	248
Minerals	3.954	Cement	360
Forensic Materials	3.612	Superconductors	139
Common Phases	3.202		
As of Set 42			

Sub-File	Entries	Sub-File	Entries
Inorganic	109.864	Zeolites	1.654
Organic	23.466	Explosives	190
Metals and Alloys	26.921	Polymers	608
Minerals	14567	Cement	392
Forensic Materials	3.722	Superconductors	2579
Common Phases	3.802		
As of Set 50		All w/excl	118.642

Данные от качестве дифракционного стандарта

<u>Знак ``*".</u>

- 1. Химически охарактеризован.
- 2. Интенсивности измерены инструментально.
- 3. Хороший диапазон и сглаженный разброс интенсивностей
- 4. Линии с *d*≤2.50Å : 2.222Å. *d*≤1.200Å : 1.1111Å.
- 5. Нет серьезных систематических ошибок.
- 6. Нет линий с |∆2θ |≥0.05°.
- 7. Средняя величина |∆2θ|≤0.03°.
- 8. Нет неиндицированных, примесных линий или линий, не

соответствующих погасаниям.

<u>Знак "I"</u>.

- 1. 1-3,6 выполняются менее жестко.
- 2. Линии с *d*≤2.00Å : 1.111Å.
- 3. Нет линий с | ∆2θ | ≥0.2°.
- 4. Средняя величина |∆2θ| ≤ 0.06°.
- 5. Неиндицированных, примесных линий или линий, соответствующих погасаниям ≤2, среди них нет сильнейших.

Данные от качестве дифракционного стандарта

<u>Знак "О"</u>.

- 1. 1-4 могут частично не выполняться.
- 2. Неиндицированых, примесных линий или линий, не

соответствующих погасаниям >3.

3. Одна из 3-х сильнейших линий непроиндицирована.

Отсутствие знака (В)

1. Не выполняются критерии *, i, O.

<u>Знак "С"</u>.

2. Рентгенограмма рассчитана из структурных данных

Название	Содержание	Центр
Cambridge Structural Database (CSD)	Organic, Organo-metallic	Cambridge UK
Inorganic Crystal Structure Database (ICSD)	Inorganic Materials	Karlsruhe FRG
NRCC Metals Data File (CRYSTMET)	Metals and Alloys	Ottawa Canada
Protein Data Bank (PDB)	Biological Macromolecules	Brookhaven USA
NBS Crystal Data NBS (CD)	Inorganic and Organic	Gaithersburg USA

Методы поиска соответствия «эксперимент – стандарт» - Search/Match

Исходные данные: {*d,I*} Параметры поиска:

- 1. $|\Delta 2\theta|_{max}$
- 2. Минимальная I_{ехр}
- 3. Минимальное число линий соответствия
- 4. Максимальное число пропущенных линий

5. ...

Возможно введение дополнительных ограничений: подбаза, качество...

Исходные данные: <u>Input</u> Параметры поиска:

- 1. Сильнейшие линии (3)
 - <u>Hanawalt.</u>
- Линии при малых углах (8 первых) -<u>Fink</u>
- 3. Элементный состав фазы
- 4. Формула, название, минерал, цвет...
- 5. Симметрия, параметры ячейки...
- 6. ...

Критерии качества для автоматического поиска.

где n - общее число линий на рентгенограмме;

- s для стандарта
- о для наблюдаемой линии

После автоматического поиска результаты по умолчанию упорядочены по $F(\theta)$, после ручного – по номеру стандарта

3. Некоторые практические аспекты

Финальная стадия поиска – визуальный анализ соответствия «стандарт – эксперимент»

Критерии соответствия:

- 1. Все линии стандарта должны присутствовать на экспериментальной дифрактограмме
- 2. Соотношение интенсивностей?
- 3. Качество стандарта *, I, C
- 4. Химический состав «образец/стандарт»

Текстура – нарушение случайной ориентации кристаллитов в поликристаллической пробе.

Скол и порошок $ZrO_2/Al_2O_3/SiO_2$ композита

3. Некоторые практические аспекты

Влияние геометрии съемки на текстурирование.

Семинар по WinXPow!

4. Основная задача индицирования

Основная задача индицирования – определение **a***, **b***, **c***, и, следовательно, **a, b, c**

Порошок – модули векторов и углы между ними

Межплоскостное расстояние $d = \lambda/2\sin\theta$ – профильный анализ

$$\frac{1}{d^2} = \left|h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*\right|^2$$

$$Q = \frac{10000}{d^2}$$

 $d = f(a, b, c, \alpha, \beta, \gamma)$

Общее выражение для d:

$$\frac{1}{d^2} = \frac{\frac{h^2}{a^2 \sin^2 \alpha} + \frac{2kl}{bc} (\cos \beta \cos \gamma - \cos \alpha) + \frac{k^2}{b^2 \sin^2 \beta} + \frac{2hl}{ac} (\cos \alpha \cos \gamma - \cos \beta) + \frac{l^2}{c^2 \sin^2 \gamma} + \frac{2hk}{ab} (\cos \alpha \cos \beta - \cos \gamma)}{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma}$$

Несколько проще для высших сингоний

Но в любом случае:

$$\frac{1}{d^2} = Ah^2 + Bk^2 + Cl^2 + Dhk + Ehl + Fkl$$

Тогда для *п* рефлексов:

Очевидно, что задача является вариационной... Применяем метод МНК

$$\begin{pmatrix} h_1^2 & k_1^2 & l_1^2 & h_1k_1 & k_1l_1 & h_1l_1 \\ h_2^2 & k_2^2 & l_2^2 & h_2k_2 & k_2l_2 & h_2l_2 \\ & & & & \\ h_m^2 & k_m^2 & l_m^2 & h_mk_m & k_ml_m & h_ml_m \end{pmatrix} \times \begin{pmatrix} A \\ B \\ C \\ D \\ E \\ F \end{pmatrix} = \begin{pmatrix} Q_1 + \varepsilon_1 \\ Q_2 + \varepsilon_2 \\ \dots \\ Q_m + \varepsilon_m \end{pmatrix},$$
 ИЛИ

 $\mathbf{A} \times \mathbf{X} = \mathbf{Q}$

И тогда:

 $\mathbf{X} = (\mathbf{AT} \times \mathbf{A})^{-1} \times (\mathbf{AT} \times \mathbf{Q})$

5.2 Критерии правильности индицирования

N	Н	К	L	Int.	d[obs]	Q[obs]	h2+k2+l2	Q[calc]
1 *	1	1	0	0.3	8.8360	128.1	2	128.0
2 *	2	0	0	11.8	6.2538	255.7	4	256.0
3 *	2	1	0	7.2	5.5934	319.6	5	320.0
4 *	2	1	1	23.3	5.1057	383.6	6	383.9
5 *	2	2	0	1.5	4.4208	511.7	8	511.9
6 *	2	2	1	6.2	4.1682	575.6	9	575.9
7 *	3	1	0	8	3.9542	639.6	10	639.9
8 *	3	1	1	59.7	3.7700	703.6	11	703.9
9 *	2	2	2	21.8	3.6092	767.7	12	767.9
10 *	3	2	0	8.3	3.4674	831.7	13	831.8
11 *	3	2	1	44.9	3.3414	895.7	14	895.9
12 *	4	0	0	21.2	3.1255	1023.7	16	1023.9
13 *	4	1	0	60	3.0321	1087.7	17	1087.9
14 *	3	3	0	100	2.9467	1151.7	18	1151.8
15 *	3	3	1	3.4	2.8680	1215.7	19	1215.8
16 *	4	2	0	36.8	2.7955	1279.6	20	1279.8
17 *	4	2	1	24.1	2.7282	1343.5	21	1343.8
18 *	3	3	2	47.5	2.6654	1407.6	22	1407.8
19 *	4	2	2	15.3	2.5520	1535.5	24	1535.7
20 *	4	3	0	17.4	2.5002	1599.7	25	1599.7
21 *	5	1	0	46.3	2.4516	1663.8	26	1663.8
22 *	5	1	1	2.4	2.4058	1727.8	27	1727.8
23 *	5	2	0	10.6	2.3214	1855.7	29	1855.7
24 *	5	2	1	6.8	2.2823	1919.8	30	1919.6
25 *	4	4	0	11.6	2.2098	2047.8	32	2047.6
26 *	4	4	1	6.4	2.1761	2111.7	33	2111.7
27 *	5	3	0	8.3	2.1438	2175.9	34	2175.7
28 *	5	3	1	9.2	2.1130	2239.8	35	2239.5
29 *	6	0	0	9.3	2.0834	2303.9	36	2303.6
30 *	6	1	0	1.3	2.0550	2368.0	37	2367.5
31 *	6	1	1	11.7	2.0279	2431.7	38	2431.7
32 *	6	2	0	2	1.9765	2559.8	40	2559.5
33 *	5	4	0	15.2	1.9523	2623.7	41	2623.7
34 *	5	4	1	20.7	1.9289	2687.7	42	2687.7
35 *	5	3	3	3.1	1.9063	2751.8	43	2751.5
36 *	6	2	2	1.7	1.8845	2815.8	44	2815.5
37 *	6	3	0	4.7	1.8635	2879.7	45	2879.7
38 *	6	3	1	23.1	1.8431	2943.8	46	2943.4
39 *	4	4	4	0.5	1.8041	3072.4	48	3071.4
40 *	6	3	2	9.7	1.7858	3135.7	49	3135.3

File title : Hg7SnP4Br6 Number of accepted peaks : 111 2Theta window : 0.050 Symmetry : Cubic P Spacegroup : P 21 3 (No. 198)

Refined cell parameters : Cell_A : 12.50099(7) Cell_Volume: 1953.591(19)

Number of single indexed lines : 111 Number of unindexed lines : 0

F(30) = 327.7 (0.003, 32)

Отклонение от расчётных значений. Количество возможных линий.

Критерий М₂₀ (Де-Вольф)

$$\mathbf{M}_{20} = \frac{\mathbf{Q}_{20}}{2 \varepsilon} ,$$

где Q₂₀ - значение Q_{эксп.} для 20-й линии; N_{poss.} - число теоретически возможных линий, включая полученную 20-ю;

 $\overline{\epsilon}$ - среднее расхождение между $Q_{\text{расч.}}$ и $Q_{\text{эксп.}}$ для всех линий с $\leq Q_{20}$

М₂₀>30 : индицирование корректно

Критерий F_N (Figure-of-Merit) (Смит-Снайдер)

$$\mathbf{F}_{\mathbf{N}} = \left(\frac{1}{|\overline{\Delta 2\theta}|}\right) \left(\frac{\mathbf{N}}{\mathbf{N}_{\text{poss.}}}\right),$$

где N - количество наблюдаемых линий;

N_{poss.} - число теоретически возможных линий;

 $|\overline{\Delta 2\theta}|$ - средняя абсолютная разница между $2\theta_{\text{расч.}}$ и $2\theta_{\text{эксп.}}$.

F₃₀>20 : индицирование корректно

Число теоретически возможных линий

Необходимо учитывать все погасания, найденные на рентгенограмме, и не включать их в значение N_{poss}.

Систематические наложения рефлексов:

а). Только один набор индексов для плоскости (без учёта фактора повторяемости) : например, (100) для кубической сингонии, а не все шесть возможных.

б). Некоторым различным наборам *hkl* могут соответствовать одинаковые межплоскостные расстояния (например, (333) и (511) для кубической сингонии).

Для случайно налагающихся рефлексов, имеющих примерно одинаковые значения d (которые не могут быть экспериментально разделены), все различные индексы считаются в N и $N_{poss.}$ как отдельные линии.

Полезные советы

- чем точнее профильный анализ, тем легче расчёты
- линии с большими *d* наиболее важны для определения параметра
- уточняйте параметр индицирования 'А' по сильным линиям по мере индицирования
- разброс ошибок ΔQ должен быть одинаковым для <u>всех</u> углов
- ВСЕ сильные линии должны быть проиндицированы

6. Индицирование дифрактограмм неизвестных соединений

 $\frac{1}{d^2} = Ah^2 + Bk^2 + Cl^2 + Dhk + Ehl + Fkl$

Для набора линий с неизвестными hkl необходимо подобрать индексы

Методы индицирования рентгенограмм

- 1. Аналитические (вручную)
- 2. Подбор изоструктурного соединения
- 3. Автоиндицирование (программы)
- 4. Метод гомологии

6.2 Индицирование дифрактограммы кубического соединения

D	2Theta	Q	Q/Q1	Q/Q0
3.6190	24.579	763.52	1.00	3.00
3.1334	28.462	1018.52	1.33	4.00
2.8026	31.906	1273.11	1.67	5.00
2.3688	37.953	1782.09	2.33	7.00
2.2152	40.697	2037.78	2.67	8.01
1.8898	48.110	2800.07	3.67	11.00
1.8095	50.390	3054.18	4.00	12.00
1.7386	52.597	3308.10	4.33	13.00
1.6187	56.834	3816.61	5.00	15.00
1.5201	60.893	4327.49	5.67	17.00
1.4382	64.767	4834.38	6.33	19.00
1.4018	66.666	5088.94	6.67	20.00
1.3678	68.548	5344.83	7.00	21.00
1.3069	72.229	5854.70	7.67	23.00
1.2795	74.029	6107.99	8.00	24.00
1.2532	75.853	6367.00	8.34	25.02
1.2063	79.373	6872.54	9.00	27.00

$$Q_0 = Q_1 / 3 \approx 254.5$$

 $h^2 + k^2 + l^2 = 1,2,3,4,5,6,8,9,10,11,12,13,14,16...$

Есть сумма 7 -Необходимо уменьшить Q₀!

6.2 Индицирование дифрактограммы кубического соединения

D	2Theta	Q	Q/Q1	Q/Q0	h	k	I
3.6190	24.579	763.52	1.00	6.00	2	1	1
3.1334	28.462	1018.52	1.33	8.00	2	2	0
2.8026	31.906	1273.11	1.67	10.00	3	1	0
2.3688	37.953	1782.09	2.33	14.00	3	2	1
2.2152	40.697	2037.78	2.67	16.01	4	0	0
1.8898	48.110	2800.07	3.67	22.00	3	3	2
1.8095	50.390	3054.18	4.00	24.00	4	2	2
1.7386	52.597	3308.10	4.33	26.00	4	3	1
1.6187	56.834	3816.61	5.00	29.99	5	2	1
1.5201	60.893	4327.49	5.67	34.01	5	3	0
1.4382	64.767	4834.38	6.33	37.99	6	1	1
1.4018	66.666	5088.94	6.67	39.99	6	2	0
1.3678	68.548	5344.83	7.00	42.00	5	4	1

 $Q_0 = 127.27(4), a^2 = 10000/Q, a = 8.8641(14) Å$

6.3 Метод Хесса - Липсона

$$\frac{1}{d^{2}} = \frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} + \frac{l^{2}}{c^{2}} \qquad \lambda = 2d\sin\theta$$

$$\sin^{2}\theta_{hkl} = A'h^{2} + B'k^{2} + C'l^{2} , \text{где} \qquad A' = \frac{\lambda^{2}}{4} \times \frac{1}{a^{2}} \quad \text{и т.д.}$$
Torga:
$$\sin^{2}\theta_{h00} = A'h^{2} \qquad \sin^{2}\theta_{0k0} = B'k^{2} \quad \sin^{2}\theta_{00l} = C'l^{2}$$
T.e.
$$\sin^{2}\theta_{hkl} = \sin^{2}\theta_{h00} + \sin^{2}\theta_{0k0} + \sin^{2}\theta_{00l}$$
otryga:
$$\sin^{2}\theta_{00l} = \sin^{2}\theta_{hkl} - \sin^{2}\theta_{hk0} \qquad A' = \frac{A'h^{2}}{C'l^{2}}$$

$$M TAK gamee...$$

$$\mathbf{Q}_{hkl} = h^2 \mathbf{A} + k^2 \mathbf{B} + l^2 \mathbf{C} + hk \mathbf{D}_1 + kl \mathbf{D}_2 + hl \mathbf{D}_3$$

Надо найти 3 вектора обратной решётки (6 линий)

Можно рассматривать следующие соотношения:

$$Q_{hk0} = h^2 a^{*2} + k^2 b^{*2} + 2hka^* b^* \cos \gamma^*, \quad u \pi u$$
$$Q_{hk0} = h^2 A + k^2 B + hk D_1$$

тогда:

$$Q_{hk0} - Q_{h\bar{k}0} = 2hkD_1$$

 $Q_{hk0} + Q_{h\bar{k}0} = 2(Q_{h00} + Q_{0k0})$ и так далее...

ITO

J.Visser, J.Appl.Cryst. **2**, 89-95 (1969) Основан на математических соотношениях в обратной решётке. Особенно удобен для низших симметрий.

TREOR

P.-E. Werner et. al, J.Appl.Cryst. **18**, 367-370 (1985) Использует метод проб и ошибок при переборе Миллеровских индексов для выбранных базовых линий. Особенно удобен для ромбической и высших симметрий.

DICVOL

A.Boultif & D.Louër, J.Appl.Cryst. **24**, 987-993 (1991) Метод последовательного разложения. Работает для всех симметрий File title : Potassium Iodide Symmetry : Cubic F Spacegroup : F m 3 m (No. 225) Refined cell parameters : Cell A : 7.0655(3) Cell Volume: 352.724(23) Number of single indexed lines : 24 Number of unindexed lines : 0 K L 2Th[calc] obs-calc 2Th[obs] Int. Ν Η 1 1 1 1 21.769 -0.0038 42.0 21.765

 2
 0
 0
 25.188
 0.0200

 2
 2
 0
 35.921
 0.0006

 3
 1
 1
 42.395
 -0.0138

 2 3 4 25.208 100.0 0 35.921 0.0006 70.0 35.922 42.395 -0.0138 29.0 42.381 2 2 2 44.378 0.0147 27.0 5 44.393 18 102.242 7 1 1 102.260 -0.0183 2.0 4 6 19 103.630 103.658 3.0 0 -0.02782 4 б 20 109.337 109.342 -0.0049 4.0 1 7 3 21 113.727 113.736 -0.0088 1.0 8 0 0 121.425 0.0212 22 121.446 2.0 2 8 0 128.059 -0.0215 23 128.037 3.0 6 6 0 24 135.389 135.362 0.0272 1.0 Average delta(2Theta) = 0.018 Maximum delta(2Theta) = 0.045 (peak 15) = 2.5 * average Figure of Merit F(24) = 51.5 (0.018, 26)