

Уточнение кристаллических структур. Метод Ритвельда.

Павел Чижов

Москва 2010. Курс для 415 группы Химического ф-та МГУ. Лекция 7.

- 1. Математические особенности задачи о решении кристаллической структуры. Проблема фаз. Исходная модель.
- 2. Уточнение кристаллической структуры.
 - 2.1 Метод Ритвельда
 - 2.2 Учет текстуры
 - 2.3 Выбор оси текстурирования
 - 2.4 Особенности уточнения текстурированных проб
 - 2.5 Результаты уточнения
 - 2.6 Методы ЛеБеля и Паули.

3. Бесстандартный количественный анализ.

Экспериментально регистрируемая величина – интенсивность дифракционного максимума:

Монокристалл (в первом приближении):

$$I_{hkl} = kI_0 P \big| F_{hkl} \big|^2$$

Порошок (однофазный образец):

$$I(2\theta) = B(2\theta) + k \sum_{h,k,l} p_{hkl} \times \left| F_{hkl} \right|^2 \times LPG \times T_{hkl} \times E \times P_{hkl} (2\theta_{hkl} - 2\theta)$$

Т.о. в ходе эксперимента мы получаем информацию о |F|, но не о фазах φ

$$F_{hkl} = \left| F_{hkl} \right| e^{i\varphi_{hkl}}$$

Решение кристаллической структуры: определение параметров кристаллической структуры (a,b,c, пространственная группа, координаты атомов) с точностью, обеспечивающей возможность дальнейшего уточнения указанных параметров по процедуре МНК (окрестность глобального минимума)

В принципе, дифрактограмма соответствие

Если мы определили исходную модель, то...

$$F_{hkl}^{calc} = \sum_{j} g_{j} t_{j} (\mathbf{q}_{hkl}) e^{2\pi i (hx_{j} + ky_{j} + lz_{j})} F_{atom}^{j} (\mathbf{q}_{hkl})$$

$$[F_{hkl}|_{\exp} \rbrace \leftrightarrow \{F_{hkl}|_{calc}\}, \min \Phi = \sum_{hkl} w (F_{hkl}|_{calc} - |F_{hkl}|_{\exp})^{2}$$

$$u\pi u$$

$$[F_{hkl}|_{\exp}^{2} \rbrace \leftrightarrow \{F_{hkl}|_{calc}^{2}\}, \min \Phi = \sum_{hkl} w (|F_{hkl}|_{calc}^{2} - |F_{hkl}|_{\exp})^{2}$$

Экспериментальные данные:

Теоретическая рентгенограмма:

2 0	Интенсивность, имп/с			
38	15.5			
38.01	15.5			
38.02	20.5			
38.03	18			
38.04	16.5			
38.05	17.5			
38.06	20			
38.07	19			
38.08	18			

 $I(2\theta) = B(2\theta) + k \sum_{kl} p_{hkl} \times \left| F_{hkl} \right|^2 \times LPG \times T_{hkl} \times P_{hkl}(2\theta_{hkl} - 2\theta)$ *I*(2*θ*) – Зависимость интенсивности от угла $B(2\theta)$ – Зависимость фона от угла *k* – Коэффициент пропорциональности p_{hkl} – Фактор повторяемости $\left|F_{hkl}\right|^2$ – Структурная амплитуда *LPG* – Лоренцевский+поляризационный факторы *Т_{hkl}* – Коэффициент текстурирования $P_{hkl}(2\theta_{hkl}-2\theta)$ — Профильная функция

Уточнение: минимизация отклонения

$$\Phi = \sum_{i} W_i \left(I_{\mathsf{SKCN}} - I_{\mathsf{meop}} \right)^2$$

i – номер экспериментальной точки w_i – статистический вес ($1/I_{3KCP}$)

$$I(2\theta) = B(2\theta) + k \sum_{h,k,l} p_{hkl} \times \left| F_{hkl} \right|^2 \times LPG \times T_{hkl} \times P_{hkl} (2\theta_{hkl} - 2\theta)$$

1.1 Параметры фона

$$B(2\theta) = f_0 + f_1(2\theta) + f_2(2\theta)^2 + f_3(2\theta)^3 + \dots$$

{f_i} – числовые коэффициенты, ортогональные полиномы и т.п.

Число компонент: $f_i > 3\sigma(f_i)$

Аморфные фазы = широкие максимумы фона

$$I(2\theta) = B(2\theta) + k \sum_{h,k,l} p_{hkl} \times \left| F_{hkl} \right|^2 \times LPG \times T_{hkl} \times P_{hkl} (2\theta_{hkl} - 2\theta)$$

1.2 Коэффициент пропорциональности *k* – ключ к количественному анализу

- 1.3 *р*_{*hkl*} определяется структурной моделью
- 1.4 LPG обычно не уточняется
- 1.5 *Т*_{*hkl*} уточняется для текстурированных образцов (03.05.2010!).
- 1.6 20_{hkl} уточнение параметров элементарной ячейки и «сдвига нуля»

$$2\theta_{hkl} = f(h, k, l, a, b, c, \alpha, \beta, \gamma) + \Delta_{2\theta}$$

 $a,b,c,lpha,eta,\gamma$ - параметры элементарной ячейки

Параметры элементарной ячейки уточняются для всех основных фаз и для примесных фаз, число рефлексов для которых больше числа уточняемых переменных

$$\Delta_{2 heta}$$
 - «сдвиг нуля». Уточняем в 99.9% случаев.

$$I(2\theta) = B(2\theta) + k \sum_{h,k,l} p_{hkl} \times \left| F_{hkl} \right|^2 \times LPG \times T_{hkl} \times P_{hkl}(2\theta_{hkl} - 2\theta)$$

1.7 $P_{hkl} (2\theta_{hkl} - 2\theta)$ – профильная функция.

$$P_{hkl} = P(2\theta_{hkl}, U, W, V, LX, LY....)$$

PV (Thomson):

$$P = \eta G + (1 - \eta)L,$$

$$FWHM^{2}_{G} = W + V \tan \theta + U \tan^{2} \theta$$

$$FWHM_{L} = \left(\frac{LX}{\cos \theta}\right) + LY \tan \theta$$

$$\eta \sim \left(\frac{FWHM_{L}}{FWHM_{G}}\right)$$

Уточняемые параметры: *W*, *V*, *U*, *LX*, *LY* + параметры асимметрии. PVII:

$$P \sim (1 + f(\beta)(2\theta_{hkl} - 2\theta)^2)^{-\beta},$$

$$FWHM^2 = W + V \tan \theta + U \tan^2 \theta$$

Уточняемые параметры: *W*, *V*, *U*, *β*

Хорошее начальное приближение профиля – залог успешного уточнения

$$I(2\theta) = B(2\theta) + k \sum_{h,k,l} p_{hkl} \times |F_{hkl}|^2 \times LPG \times T_{hkl} \times P_{hkl}(2\theta_{hkl} - 2\theta)$$
$$F_{hkl}^{calc} = \sum_j g_j t_j (\mathbf{q}_{hkl}) e^{2\pi i (hx_j + ky_j + lz_j)} F_{atom}^j (\mathbf{q}_{hkl})$$

- 1. Координаты атомов
- 2. Заселенность атомов
- 3. Параметры атомного смещения (ADP) обычно, как U_{iso} (или B_{iso})

Стандартный порядок уточнения:

- 1. к, параметры фона
- 2. Параметры элементарной ячейки + профильные параметры
- 3. Профильные параметры + параметры элементарной ячейки
- 4. Текстура
- 5. Координаты тяжелых атомов
- 6. Координаты легких атомов
- 7. ADP/заселенность тяжелых атомов
- 8. ADP/заселенность легких атомов

N – число точек на дифрактограмме

$$I_{calc}^{1}(B, k, P...) = I_{exp}^{1}$$

$$I_{calc}^{2}(B, k, P...) = I_{exp}^{2}$$

$$I_{calc}^{2}(B, k, P...) = I_{exp}^{2}$$

$$I_{calc}^{N}(B, k, P...) = I_{exp}^{N}$$

$$I_{calc}^{N}(B, k, P...) = I_{exp}^{N}$$
Pacчет приращений:

$$\Delta \mathbf{x} = \left(\mathbf{A}^{T}\mathbf{W}\mathbf{A}\right)^{-1}\left(\mathbf{A}^{T}\mathbf{W}\mathbf{y}\right)$$
Hobbie значения **A**, **y**

$$\frac{\partial I_{calc}^{1}(B)}{\partial B}\Delta B + \frac{\partial I_{calc}^{2}(k)}{\partial k}\Delta k + ... = I_{exp}^{2} - I_{calc}^{2}(B, k, ...)$$

$$\frac{\partial I_{calc}^{N}(B)}{\partial B}\Delta B + \frac{\partial I_{calc}^{N}(k)}{\partial k}\Delta k + ... = I_{exp}^{N} - I_{calc}^{N}(B, k, ...)$$

$$\frac{\partial I_{calc}^{N}(B)}{\partial B}\Delta B + \frac{\partial I_{calc}^{N}(k)}{\partial k}\Delta k + ... = I_{exp}^{N} - I_{calc}^{N}(B, k, ...)$$

$$\frac{\partial I_{calc}^{N}(B)}{\partial B}\Delta B + \frac{\partial I_{calc}^{N}(k)}{\partial k}\Delta k + ... = I_{exp}^{N} - I_{calc}^{N}(B, k, ...)$$

$$\frac{\partial I_{calc}^{N}(B)}{\partial B}\Delta B + \frac{\partial I_{calc}^{N}(k)}{\partial k}\Delta k + ... = I_{exp}^{N} - I_{calc}^{N}(B, k, ...)$$

$$\frac{\partial I_{calc}^{N}(B)}{\partial B}\Delta B + \frac{\partial I_{calc}^{N}(k)}{\partial k}\Delta k + ... = I_{exp}^{N} - I_{calc}^{N}(B, k, ...)$$

$$\frac{\partial I_{calc}^{N}(B)}{\partial B}\Delta B + \frac{\partial I_{calc}^{N}(k)}{\partial k}\Delta k + ... = I_{exp}^{N} - I_{calc}^{N}(B, k, ...)$$

$$\frac{\partial I_{calc}^{N}(B)}{\partial B}\Delta B + \frac{\partial I_{calc}^{N}(k)}{\partial k}\Delta k + ... = I_{exp}^{N} - I_{calc}^{N}(B, k, ...)$$

Метод Ритвельда – это практически всегда нелинейный МНК.

2.1 Стандартные отклонения. Факторы недостоверности.

Текстурирование (текстура) – наличие преимущественной ориентации кристаллитов в образце

Текстурирование влияет на относительную интенсивность дифракционных максимумов

2.2 Учет текстуры

Текстуры нет

Присутствует текстурирование

Изменение вероятности попадания в отражающее положение:

Зоны оси текстурирования:

- усиливаются для пластинчатых

кристаллов

- ослабляются для игольчатых

кристаллов

Основной эффект – для $\mathbf{d}_{hkl} \| \mathbf{d}^T \mathbf{U} \mathbf{d}_{hkl} \perp \mathbf{d}^T$

Пластинчатые кристаллы $\mathbf{d}^{T} = [111]$

Усиление рефлексов зоны [111]: *Т*₁₁₁ > *Т*₁₁₀

- 1. Морфология кристаллитов
 - чешуйки, пластинки, иголки, сложные сростки
- 2. Неизотропное воздействие на образец
 - градиент упругих сил (например, при прессовании, прокатке)
 - температурный градиент (быстрая кристаллизация на холодной подложке)
 - градиент электромагнитного поля (для ферромагнетиков)
 - градиент электрических полей
 - градиент химического потенциала

Правильная пробоподготовка и грамотный выбор режима съемки в большинстве случаев помогают устранить нежелательное текстурирование!

Текстура увеличивается при:

- недостаточном истирании образца
- использовании массивных образцов (особенно металлов).
- прессовании образца

2.2 Учет текстуры

$$I_{hkl} = K \times p_{hkl} \times L_{\theta} \times P_{\theta} \times A_{\theta} \times T_{hkl} \times E_{hkl} \times |F_{hkl}|^{2}$$

Нужно определить зависимость $T_{hkl} (\mathbf{d}_{hkl}, \mathbf{d}^{T})!$
1) Выводим общий вид зависимости...
Основной эффект - для $\mathbf{d}_{hkl} || \mathbf{d}^{T}$ И $\mathbf{d}_{hkl} \perp \mathbf{d}^{T}$
Вероятно, $T_{hkl} \propto \phi_{hkl}$, где $\cos \phi_{hkl} = \frac{\mathbf{d}_{hkl} \cdot \mathbf{d}^{T}}{d_{hkl} \cdot d^{T}}$

2) А давайте использовать зависимость с вариационными переменными!

$$T_{hkl} = T_{hkl} (\phi_{hkl}, \tau_1, \tau_2, \tau_3...)$$

где $\tau_1, \tau_2, \tau_3 \dots$ варьируются в ходе поиска минимума стандартного функционала метода Ритвельда

2.2 Учет текстуры

2) Какую же зависимость $T_{hkl} = T_{hkl}(\phi_{hkl}, \tau_1, \tau_2, \tau_3...)$ применить?

2

Стандартный выбор: функция Марча-Долласа (*N*-число симметрически эквивалентных рефлексов)

$$T_{hkl} = \frac{1}{N} \sum_{i=1}^{N} \left(\tau^2 \cos^2 \phi_{hkl}^{i} + \frac{1}{\tau} \sin^2 \phi_{hkl}^{i} \right)^{-3/2}$$

Единственный варьируемый параметр auau < 1 - пластинчатые кристаллы, $T_{||} > T_{\perp}$ au = 1 - нет текстурирования, $T_{||} = T_{\perp}$ au > 1 - игольчатые кристаллы, $T_{||} < T_{\perp}$

Функция Марча-Долласа - идеальный выбор для одноосной текстуры! Подходит в 98% случаев © 1. Для слоистых структур: нормаль к слоям (графит - [001], BN - [001], слюда - [010] и т.п.):

2.3 Выбор оси текстурирования

2. Для изотропных структур - нормали к «естественным» граням

 $W(K_2Mg_2(SO_4)_3 = 4.16\%)$ $W(K_2Ca_2Mg(SO_4)_4 \cdot 2H_2O) = 2.34\%$ Подобная текстура встречается в прессованных образцах и плохо измельченных природных объектах 2.3 Выбор оси текстурирования

- 3. При большой разности в длинах ребер ячейки иголки растут вдоль малого ребра (или ребер!).
- 4. Ось симметрии в моноклинных, тетрагональных и гексагональных структурах

5. «Пробы и ошибки» - иногда крайне эффективно 🙂

1. УТОЧНЕНИЕ текстуры возможно ТОЛЬКО для фаз с достаточным количеством рефлексов РАЗНЫХ зон!

В таких случаях фиксируйте т на некотором малом значении

2.4 Особенности уточнения текстурированных проб

- 2. Правильный выбор оси текстурирования залог верного уточнения.
- 3. Если τ = 1 \pm 3 σ отключайте текстуру (или меняйте ось \odot)
- Близкие к 1 коэффициенты корреляции т с другими переменными признак неверного уточнения

(ось, модель текстурирования, структурная модель и т.п.)

2.5 Результаты уточнения кристаллической структуры.

Даже для

многофазных смесей!

Fe	2b	1	0	0	1/2	0.0010(9)
As	2c	1	0	1/2	0.6612(2)	0.0042(8)
0	- 2a	0.95	0	0	0	0.020/4)
F		0.05	U	U	U	0.020(4)

Необходимы для расчетов |*F*| для последующего решения структуры! Паули:

$$I(2\theta) = B(2\theta) + k \sum_{h,k,l} p_{hkl} \times \left| F_{hkl} \right|^2 \times LPG \times T_{hkl} \times P_{hkl} (2\theta_{hkl} - 2\theta)$$

При этом $|F_{hkl}|^2$ – варьируемые параметры!

ЛеБель:

$$I(2\theta) = B(2\theta) + k \sum_{h,k,l} p_{hkl} \times \left| F_{hkl} \right|^2 \times LPG \times T_{hkl} \times P_{hkl}(2\theta_{hkl} - 2\theta)$$

При этом |*F_{hkl}*|² – неизменны в цикле МНК! Интенсивности рассчитываются по аналогии с

$$I_{hkl}^{\scriptscriptstyle \mathfrak{s}\kappa cn}(2\theta) = \left(I_{\scriptscriptstyle \mathfrak{s}\kappa cn}(2\theta) - B(2\theta)\right) \frac{I_{hkl}^{\scriptscriptstyle pacu}(2\theta)}{\sum I_{hkl}^{\scriptscriptstyle pacu}(2\theta)}$$

При начальном единичном приближении.

Не являются методами уточнения структуры!

hkl

3. Бесстандартный количественный РФА

$$I_{meop}(2\theta) = B(2\theta) + k \sum_{h,k,l} p_{hkl} \times \left| F_{hkl} \right|^2 \times LPG \times T_{hkl} \times P_{hkl}(2\theta_{hkl} - 2\theta)$$

Расчет массовых долей фаз из данных о k:

$$w_i = \frac{Z_i M_i V_i \times k_i}{\sum_i Z_i M_i V_i \times k_i}$$

Z – число формульных единиц

М – молекулярная масса формульной единицы

V – объем элементарной ячейки

Работа с твердыми растворами

Фаза	<i>w</i> , % масс.
KCl	28.0(4)
(NH ₄) ₂ HPO ₄	43.0(2)
NH ₄ H ₂ PO ₄	13.5(6)
NH ₄ Cl	3.8(2)
$\beta - (\mathrm{NH}_4)_x \mathrm{K}_{1-x} \mathrm{Cl}$	11.7(4)
	x = 0.26

3. Бесстандартный количественный РФА

Сопоставление результатов разных методов анализа

Элемент	XRF	XRD
Sm	52.69	52.02
Fe	20.86	20.49
As	26.45	27.49

P4/nmm a=3.93401(4)Å c=8.4852(2)Å