ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ ВЕЩЕСТВА И НАНОСИСТЕМ

Физика электрических и магнитных функциональных материалов

Васильев А.Н., Маркина М.М., Волкова О.С.

Диамагнетизм

Суперпарамагнетизм

Парамагнетизм

Миктомагнетизм

Антиферромагнетизм

Асперомагнетизм

Ферромагнетизм

Ферримагнетизм

etc.

А также: сверхпроводимость как "призрак" магнетизма! (gossamer superconductivity)

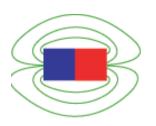
Магнитометрия -

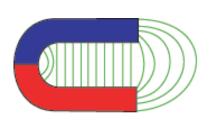
комплекс методов измерения (квази) статических магнитных свойств.

Измеряемой величиной является всегда намагниченность М, хотя при измерениях в слабых магнитных полях удобным оказывается также обсуждение нормированной намагниченности или магнитной восприимчивости:

$$\chi = \frac{M}{H}$$

$$[M] = \frac{emu}{mol}$$


$$[H] = Oe$$


$$[\chi] = \frac{emu}{mol}$$

Для уменьшения влияния размагничивающего фактора образец должен иметь форму цилиндра, вытянутого вдоль поля.

Функциональные материалы - магнетики

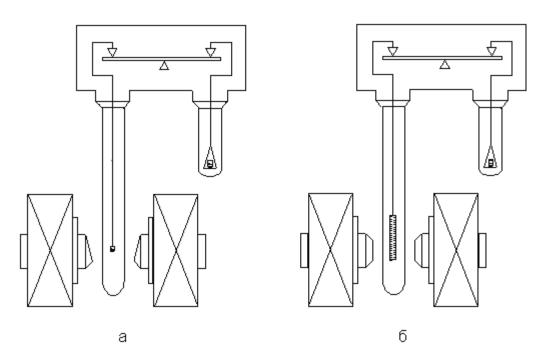
Магнетизм — форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля.

Какими частицами осуществляется магнитное взаимодействие?

Диамагнетизм

Опыт Гейма

- намагничивание вещества навстречу направлению действующего на него внешнего поля.
- следствие индукционных токов, наводимых в заполненных электронных оболочках ионов внешним магнитным полем. Эти токи создают магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему полю


Правило Ленца: индукционный ток, возникающий при относительном движении проводящего контура и источника магнитного поля имеет такое направление, что его магнитный поток компенсирует изменение магнитного потока, вызвавшего этот ток.

Диамагнетизм

Задача

Определить градиент поля, который был использован в опыте Гейма.

$$F = \chi m H \frac{\partial H}{\partial z}$$

Метод Фарадея опирается на измерение силы F, действующей вдоль оси z на образец массой m, помещенный в неоднородное магнитное поле напряженностью H. Он требует специальной геометрии полюсов магнита.

Диамагнетизм

Диамагнитная восприимчивость аддитивна.

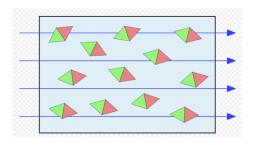
Молярная диамагнитная восприимчивость может быть рассчитана по

схеме Паскаля:
$$\chi_{dia} = \sum_{i} \chi_{dia_{i}} + \sum_{i} \lambda_{i} \approx \sum_{i} \chi_{dia_{i}}$$

Диамагнитная восприимчивость атомов в ковалентных соединениях:

Atom	χ _{Di} /(1 x 10 ⁻⁶ emu mol ⁻¹)	Atom	χ _{Di} /(1 x 10 ⁻⁶ emu mol ⁻¹)	Atom	χ _{Di} /(1 x 10 ⁻⁶ emu mol ⁻¹)	Atom	χ _{Di} /(1 x 10 ⁻⁶ emu mol ⁻¹)
Ag	-31.0	C (ring)	-6.24	Li	-4.2	S	-15.0
Al	-13.0	Ca	-15.9	Mg	-10.0	Sb(III)	<i>–</i> 74.0
As(III)	-20.9	Cl	- 20.1	N (ring)	-4.61	Se	-23.0
As(V)	-43.0	F	-6.3	N (open chain)	-5.57	Si	-13
В	-7.0	Н	-2.93	Na	-9.2	Sn(IV)	-30
Bi	-192.0	Hg(II)	-33.0	0	-4.6	Те	-37.3
Br	- 30.6	1	-44.6	P	-26.3	TI(I)	-40.0
С	- 6.00	K	-18.5	Pb(II)	-46.0	Zn	-13.5


Какова диамагнитная восприимчивость воды?


Диамагнитная восприимчивость отрицательна, не зависит от температуры и может достигать

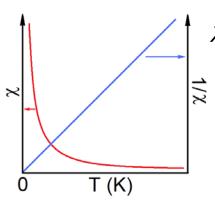
$$\chi_{\rm dia} \sim -10^{-4} \, {\rm emu/mol}$$

Парамагнетизм

Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствие внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы беспорядочно.

Парамагнетиками становятся ферро- и антиферромагнитные вещества при температурах, превышающих, соответственно, температуру Кюри или Нееля (температуру фазового перехода в парамагнитное состояние).


Парамагнетизм

Температурная зависимость магнитной восприимчивости парамагнетика подчиняется закону Кюри $\chi = C/T$. Этот закон выводится методами статистической физики и учитывает вероятность заполнения уровней с различными направлениями спинов в зависимости соотношения магнитной энергии $\mu_B B$ и тепловой энергии $k_B T$.

Постоянная Кюри $C = (N_A/3k_B)\mu_{eff}^2$

При комнатной температуре $\chi_{para} \sim 1$ emu/mol.

Квадрат эффективного магнитного момента $\mu_{eff}^2 = ng^2J(J+1)\mu_B^2$ Здесь п – число магнитных атомов на формульную единицу, g = 2 – фактор Ландэ, J — полный магнитный момент, $\mu_B = 9.274 \cdot 10^{-21} \mbox{Эрг/Гс}$

$$\chi = \chi_0 + \frac{C}{T - \Theta}$$

 $\chi = \chi_0 + \frac{C}{T - \Theta}$ χ_0 — вклад в магнитную восприимчивость, независящий от температуры,

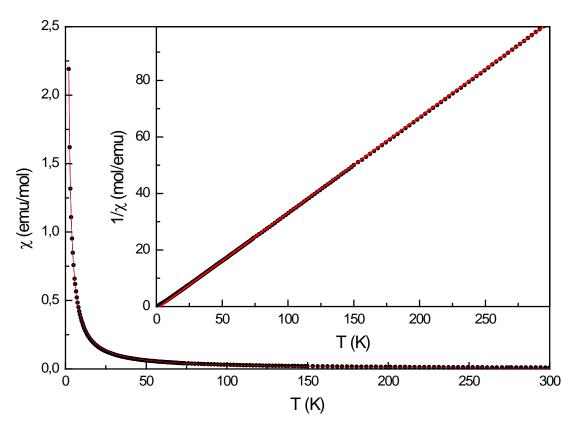
Θ - температура Вейсса

Температура Вейсса $\Theta \neq 0$ указывает на взаимодействие между магнитными моментами.

Происхождение χ_0

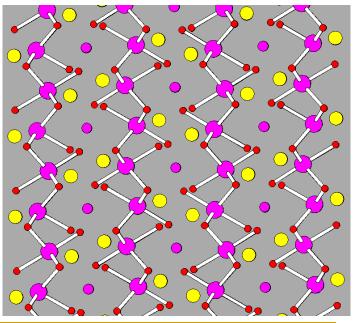
- 1. χ_{dia} независящий от температуры диамагнитный вклад в магнитную восприимчивость от внутренних электронных оболочек;
- 2. χ_{para} парамагнетизм Паули проявляется в металлах в присутствии постоянного магнитного поля, когда имеет место Зеемановское расщепление энергетических подзон с разнонаправленными спинами. Более заселённой оказывается нижележащая подзона, у электронов которой спиновый магнитный момент направлен по полю.
- 3. χ_{dia} диамагнетизм Ландау независящий от температуры вклад в магнитную восприимчивость от коллективизированных электронов.

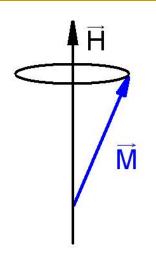
При m*=
$$m_e$$
 χ_{dia} (Ландау) = -1/3 χ_{para} (Паули)


4. $\chi_{para} = \chi_{vV}$ — парамагнетизм Ван — Флека, обязанный вкладу квантовых переходов между основным состоянием системы E_0 и ее возбужденными состояниями E_n

$$\chi_{vV} = 2N_A \sum_{n=1}^{p} \frac{\left| \left\langle n \middle| \hat{M}_z \middle| 0 \right\rangle \right|^2}{E_n - E_0}$$

Температура Вейсса О


Температура Вейсса является мерой взаимодействия между магнитными центрами.


$$\Theta = \frac{zS(S+1)}{3} \frac{J}{k_B}$$

$$LiMnP_2O_7$$

$$\Theta = 3K$$

g - фактор

Если магнитный момент поместить во внешнее магнитное поле, то он начнет прецессировать подобно вращающемуся волчку или гироскопу, т. е. его ось вращения будет медленно двигаться, описывая конус.

Частота прецессии ν определяется напряженностью внешнего магнитного поля H и отношением магнитного момента объекта M_S к его угловому моменту вращения M_L .

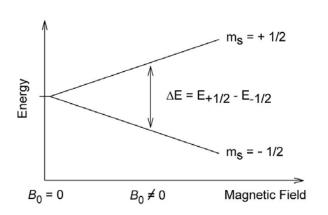
Отношение M_S/M_L о называется g-фактором частицы. Для свободного электрона g=2.

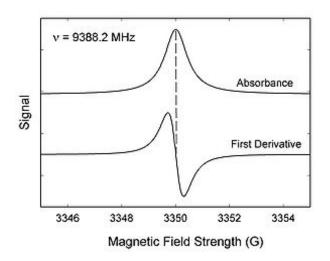
Экспериментально g- фактор можно определить с помощью электронного парамагнитного резонанса.

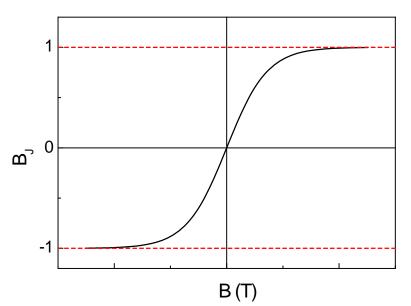
Электронный парамагнитный резонанс

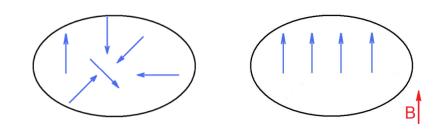
Электрон со спином $s = \frac{1}{2}$ имеет проекции магнитного момента $m_s = + \frac{1}{2}$ и $m_s = - \frac{1}{2}$.

Разница в энергиях $\Delta E = g\mu_B B - эффект$ Зеемана.


Неспаренный электрон может перемещаться между этими уровнями, излучая или поглощая электромагнитную энергию.


Фундаментальная формула ЭПР $h\nu = g\mu_B B$





На какой частоте произойдет резонансное поглощение в поле 0.3 Т?

Парамагнетизм, кривая намагничивания

Функция Бриллюэна

$$B_{J}(x) = \frac{2J+1}{2J} \coth(\frac{2J+1}{2J}x) - \frac{1}{2J} \coth(\frac{1}{2J}x),$$

$$x = \frac{g\mu_{B}JB}{k_{B}T}$$

$$M = ng\mu_B J \cdot B_J(x)$$

Чем выше температура, тем более сильные магнитные поля требуются для выведения системы в насыщение. Строго говоря, при любой конечной температуре полное магнитное насыщение невозможно.

$$cthx = \frac{\exp(x) + \exp(-x)}{\exp(x) - \exp(-x)}$$