Квантовые кооперативные явления в металлоксидных соединениях

М.М. Маркина

Квантовые кооперативные явления

К основным направлениям исследований в физике низких температур относятся работы по изучению квантовых кооперативных явлений в конденсированных средах.

Эти явления – сверхтекучесть, сверхпроводимость, магнетизм, волны зарядовой плотности – имеют место благодаря взаимно согласованному поведению огромного числа частиц (электронов).

Эти явления, за исключением сверхтекучести, разыгрываются в твердых телах, образованных одинаковыми, а чаще разными, атомами.

Имея базовые представления о свойствах атомов, можно продвигаться к пониманию их взаимодействий и, в конечном счете, выйти на тот рубеж, где макроскопические явления связываются с микроскопическим строением вещества.

На этом рубеже и находится современная физика.

Квантовые числа

Для описания состояния электрона в атоме принято использовать следующий набор параметров. Энергия электрона в атоме характеризуется главным квантовым числом *n*.

Значению *n* = 1 соответствует одно состояние электрона, т.е. одна волновая функция.

Любому *n* > 1 соответствует несколько различных состояний электрона. В этом случае энергетический спектр системы является вырожденным, а число разных состояний, соответствующих этому уровню, называется кратностью вырождения.

Состояние с определенным значением импульса характеризуется орбитальным квантовым числом *l*. Момент импульса электрона в атоме водорода как функция орбитального квантового числа записывается в виде:

$$|M| = \hbar \sqrt{l(l+1)}$$

При этом *l* может принимать только значения, меньшие *n*: $0 \le l < n$

Квантовые числа

При l > 0 определенной паре значений квантовых чисел n и l соответствует 2l+1 независимых волновых функций. Эти функции выбирают так, чтобы соответствующие состояния имели определенное значение проекции момента импульса на некоторую ось.

Каждое из состояний в этом случае может быть охарактеризовано определенным квантовым числом *m*₁, называемым магнитным квантовым числом. Проекция момента импульса на заданную ось:

$$M_{\rm z} = \hbar m_{\rm l}$$

Квантовое число m_1 может принимать целочисленные значения, удовлетворяющие неравенству: $-l \le m_1 \le l$

Квантовые числа *n*, *l*, m_1 полностью определяют орбитальное состояние электрона. Т.е. каждому набору значений этих трех чисел соответствует одна и только одна волновая функция $\Psi(x,y,z)$.

Спин электрона равен ½, а его проекция, описываемая спиновым квантовым числом $m_{\rm S}$ может принимать два значения $m_{\rm S} = \pm \frac{1}{2}$. С учетом спина кратность вырождения *n*-го уровня составляет $2n^2$.

Атомные орбитали

Ряд 3d металлов

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
	1																		2
1	H														-				He
	3	4												5	6	7	8	9	10
2	Li	Be												В	С	N	0	F	Ne
	11	12												13	14	15	16	17	18
3	Na	Mg												Al	Si	Р	S	CI	Ar
	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Са		Sc	Τ	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	*	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba		Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	П	Pb	Bi	Po	At	Rn
	87	88	**	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra		Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo

	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*Lanthanoids		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	**	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**Actinoids		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Ряд 3d металлов

Ряд 3d переходных металлов: от Sc до Zn идет заполнение внутренней 3d оболочки электронами, внешняя 4s оболочка уже заполнена. В металлооксидных соединениях, содержащих ионы 3d металлов, магнетизм вызван наличием суммарного магнитного момента незаполненной оболочки.

Строение 3d металла:

1s² 2s²p⁶ 3s²p⁶dⁿ 4s² Полностью заполненные оболочки – ядро Ar

Ионная связь

Один из видов химической связи, в основе которого лежит электростатическое взаимодействие между противоположно заряженными ионами. Как правило, эта связь формируется между атомами с большим различием электроотрицательности. Общая электронная пара полностью переходит к более электроотрицательному атому.

Такие связи в сравнительно чистом виде образуются в галогенидах щелочных металлов, например KF, так как атомы щелочных металлов имеют по одному слабо удерживаемому электрону (энергия связи примерно 3-5 эв), а атомы галогенов обладают наибольшим сродством к электрону.

Для описываемых в рамках курса металлооксидов ионная связь является основным видом взаимодействия металла и кислорода.

 $M + O \rightarrow M^{2+}O^{2-}$

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d⁵4s¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	MnO	FeO	CoO	NiO	ZnO
Sc ₂ ³⁺ O ₃ ²⁻	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2				S = 0
Нет							Нет
	3d²	3d ³	3d⁵	3d ⁶	3d7	3d ⁸	3d ¹⁰

$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow$

Sc ₂ O ₃	TiO	VO	MnO	FeO	CoO	NiO	ZnO
Sc ₂ ³⁺ O ₃ ²⁻	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2				S = 0
Нет							Нет
	3d²	3d³	3d⁵	3d ⁶	3d7	3d ⁸	3d ¹⁰

Sc ₂ O ₃	TiO	VO	MnO	FeO	CoO	NiO	ZnO
Sc ₂ ³⁺ O ₃ ²⁻	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2	S = 2			S = 0
Нет							Нет
	3d²	3d ³	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d ¹⁰

↑ ↓ ↑ ↑ ↑

Sc ₂ O ₃	TiO	VO	MnO	FeO	СоО	NiO	ZnO
Sc ₂ ³⁺ O ₃ ²⁻	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2	S = 2	S = 3/2	S = 1	S = 0
Нет							Нет
	3d²	3d³	3d⁵	3d ⁶	3d7	3d ⁸	3d ¹⁰

↑↓ ↑ ↑ ↑

Sc ₂ O ₃	TiO	VO	MnO	FeO	CoO	NiO	CuO	ZnO
Sc ₂ ³⁺ O ₃ ²⁻	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Cu ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2	S = 2	S = 3/2	S = 1		S = 0
Нет								Нет
	3d²	3d ³	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d ¹⁰ 4s ¹	3d ¹⁰

↑ ↓ ↑ ↑ ↑ ↑

$\uparrow \downarrow \ \uparrow \downarrow \ \uparrow \downarrow \ \uparrow \downarrow \ \uparrow \downarrow \ \uparrow$

Sc ₂ O ₃	TiO	VO	MnO	FeO	CoO	NiO	CuO	ZnO
Sc ₂ ³⁺ O ₃ ²⁻	Ti ²⁺ O ²⁻	V ²⁺ O ²⁻	Mn ²⁺ O ²⁻	Fe ²⁺ O ²⁻	Co ²⁺ O ²⁻	Ni ²⁺ O ²⁻	Cu ²⁺ O ²⁻	Zn ²⁺ O ²⁻
Sc ³⁺	Ti ²⁺	V ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺
S = 0	S = 1	S = 3/2	S = 5/2	S = 2	S = 3/2	S = 1	S = 1/2	S = 0
Нет								Нет
	3d ²	3d³	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d ⁹	3d ¹⁰

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
3d ¹ 4s ²	3d²4s²	3d ³ 4s ²	3d⁵4s¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
3d ¹ 4s ²	3d²4s²	3d ³ 4s ²	3d⁵4s¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
3d ¹ 4s ²	3d²4s²	3d ³ 4s ²	3d⁵4s¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ ³⁺ O ₃	V ₂ ³⁺ O ₃	Cr ₂ ³⁺ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ ³⁺ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ ³⁺ O ₃	Fe ₂ ³⁺ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
	3d1	3d ²	3d ³	3d⁴	3d⁵		3d7		

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
3d ¹ 4s ²	3d²4s²	3d ³ 4s ²	3d⁵4s¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
3d ¹ 4s ²	3d²4s²	3d ³ 4s ²	3d⁵4s¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	Cr ⁴⁺ O ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	Ti ⁴⁺ O ₂	V ⁴⁺ O ₂	CrO ₃	Mn ⁴⁺ O ₂					
		V ₂ O ₅		Mn ₂ O ₇					
		3d1	3d²	3d ³					

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃		Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
3d ¹ 4s ²	3d²4s²	3d ³ 4s ²	3d⁵4s¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	Cr ⁶⁺ O ₃	MnO ₂					
		V ₂ ⁵⁺ O ₅		Mn ₂ ⁷⁺ O ₇					
3d ¹ 4s ²	3d ² 4s ²				3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃		Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
3d ¹ 4s ²	3d²4s²	3d ³ 4s ²	3d⁵4s¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²

 $Ti_{2}^{3+}Ti^{4+}O_{5}$

 $Cr_{2}^{3+}Cr^{2+}O_{4}$

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					
3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d ⁵ 4s ¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²

Соединения со смешанной валентностью

Ті₃О₅ →Ті₂³⁺Ті⁴⁺О₅ свободный ион Ті: **3d²4s²** Ті⁴⁺ - немагнитный Ti³⁺ - 3d¹, S - ¹/₂

 $V_{3}O_{5} \rightarrow V_{2}^{3+}V^{4+}O_{5}$

свободный ион V: **3d³4s²** V⁴⁺ - 3d¹, S - ¹/₂ V³⁺ - 3d², S - 1

Соединения со смешанной валентностью

$Cr_3O_4 \rightarrow Cr_2^{3+}Cr^{2+}O_4$	свободный ион Cr: Cr ²⁺ - 3d ⁴ , S – 2 Cr ³⁺ - 3d ³ , S – 3/2	3d⁵4s¹
$Mn_{3}O_{4} \rightarrow Mn_{2}^{3+}Mn^{2+}O_{4}$	свободный ион Mn: Mn ²⁺ - 3d ⁵ , S – 5/2 Mn ³⁺ - 3d ⁴ , S – 2	3d⁵4s²
$Fe_3O_4 \rightarrow Fe_2^{3+}Fe^{2+}O_4$	свободный ион Fe: Fe ²⁺ - 3d ⁶ , S - 2 Fe ³⁺ - 3d ⁵ , S – 5/2	3d ⁶ 4s ²
$\mathrm{Co}_{3}\mathrm{O}_{4} \rightarrow \mathrm{Co}_{2}^{3+}\mathrm{Co}^{2+}\mathrm{O}_{4}$	свободный ион Со: Co ²⁺ - 3d ⁷ , S - 3/2 Co ³⁺ - 3d ⁶ , S - 2	3d ⁷ 4s ²

Sc ₂ O ₃	TiO	VO	Cr ₃ O ₄	MnO	FeO	CoO	NiO	Cu ₂ O	ZnO
	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ O ₃	Mn ₃ O ₄	Fe ₃ O ₄	Co ₃ O ₄	Ni ₂ O ₃	CuO	
	Ti ₃ O ₅	V ₃ O ₅	CrO ₂	Mn ₂ O ₃	Fe ₂ O ₃				
	TiO ₂	VO ₂	CrO ₃	MnO ₂					
		V ₂ O ₅		Mn ₂ O ₇					

Магнитные свойства двойных оксидов

Тригональная модификация оксида титана Ti_2O_3 со структурой корунда упорядочивается антиферромагнитно при $T_N \sim 470 - 520$ К.

Все оксиды ванадия антиферромагнетики: $T_N = 117$ К для VO, $T_N = 160$ К для $V_2O_3, T_N = 343$ К для VO₂.

Температура ферромагнитного упорядочения в диоксиде хрома **CrO₂** $T_{\rm C}$ = 394 K.

Оксиды марганца антиферромагнитны: $T_N = 122$ К для MnO, $T_N = 80$ К для Mn₂O₃, $T_N = 84$ К для MnO₂. Смешанный оксид Mn₃O₄ упорядочивается ферримагнитно при $T_C = 40$ К.
Магнитные свойства двойных оксидов

Оксид железа (II) **FeO** – АФМ $T_N = 198$ К, гематит α - **Fe₂O₃** со структурой корунда - АФМ $T_N = 953$ К. Смешанный оксид железа **Fe₃O₄** упорядочивается ферримагнитно при $T_C = 858$ К

Оксид кобальта **СоО** упорядочивается антиферромагнитно при $T_N = 291$ К. **Со₂О₃** - **немагнитный**, поскольку кобальт находится в низкоспиновом состоянии.

Оксид никеля **NiO** - антиферромагнетик с $T_N \sim 520$ К.

Оксид меди **СиО** - антиферромагнетик с $T_N = 230$ К.

Низкоспиновое состояние

Оксид кобальта Со203:

свободный ион Со: **3d⁷4s²** Со³⁺ - 3d⁶, S – 2

Окружающие кобальт ионы кислорода создают кристаллическое поле (поле лигандов). Электроны кобальта на 3d оболочке отталкиваются от электронов кислорода. В результате уровни, различающиеся по форме орбиталей, могут расщепиться на две группы.

Низкоспиновое состояние

Оксид кобальта **Со₂О₃:**

свободный ион Со: **3d⁷4s²** Со³⁺ - 3d⁶, S – 2

↑↓ ↑

Такое расщепление уровней наблюдается в кислородном октаэдре.

Три нижних уровня соответствуют орбиталям d_{xy} , d_{xz} , d_{yz} , которые не направлены на ионы кислорода, соответственно, отталкивание на них меньше. Лепестки орбиталей $d_x^2_{-y}^2$ и d_z^2 направлены на кислород, и отталкивание на них больше, то есть электронам менее «удобно» их занимать.

Если расщепление уровней достаточно велико, то электроны перегруппируются, чтобы занять уровни с минимальной энергией.

Низкоспиновое состояние

Co³⁺ - 3d⁶, **S** - **0**

свободный ион Со: **3d⁷4s²**

Оксид кобальта Со203:

При этом будет нарушено правило Хунда – заполнение оболочки с максимальным спином. Нарушение правила Хунда должно компенсироваться существенным выигрышем в энергии.

Как правило, расщепление уровней невелико, и низкоспиновое состояние наблюдается в редчайших случаях.

Магнетизм в твердых телах

Свободный электрон:

Спин – собственный механический момент, обладает магнитным моментом

Электронная оболочка атома:

Орбитальному механическому моменту электрона на оболочке атома соответствует орбитальный магнитный момент

Атомные ядра:

Протон и нейтрон обладают магнитным моментом

Спиновый магнитный момент

Спин электрона $s = \frac{1}{2}$ в единицах \hbar , $m_{\rm S} = \pm \frac{1}{2}$ - магнитное квантовое число

$$\left|\vec{s}\right| = \hbar \sqrt{s(s+1)}$$
 - абсолютная величина спина $s_z = \hbar m_s = \pm \frac{\hbar}{2}$ - проекция спина на ось z

Спиновый магнитный момент

Спин электрона $s = \frac{1}{2}$ в единицах \hbar , $m_{\rm S} = \pm \frac{1}{2}$ - магнитное квантовое число

$$|\vec{s}| = \hbar \sqrt{s(s+1)}$$
 - абсолютная величина спина
 $s_z = \hbar m_s = \pm \frac{\hbar}{2}$ - проекция спина на ось z
Спину – собственному механическому моменту –
соответствует спиновый магнитный момент
 $u_z|=\sqrt{3} \ \mu_B$ - абсолютная величина спинового магнитного момента
 $u_z^{\langle S \rangle} = \pm \mu_B$ - проекция спинового магнитного момента на ось z

Магнетон Бора: $\mu_B = \frac{|e|\hbar}{2mc} = 0,927*10^{-20}$ эрг / Гс

þ

Спиновый магнитный момент

Гиромагнитное отношение для спина:

Отношение спинового магнитного момента к электрона к величине спина (механического момента)

Орбитальный магнитный момент

<u>Электрон в атоме</u>: *n*, *l*, *m*_l, *m*_s

Орбитальный магнитный момент

<u>Электрон в атоме</u>: *n*, *l*, *m*_l, *m*_s

$$M_L ig| = \hbar \sqrt{l(l+1)}$$
 - абсолютная величина механического орбитального момента $M_Z^{\langle L \rangle} = m_l \hbar$ - проекция орбитального момента на ось z

Орбитальному механическому моменту соответствует орбитальный магнитный момент

 $\mu^{\langle l \rangle} = \frac{|e|}{2mc} M_L$ - абсолютная величина орбитального магнитного момента $\mu_z^{\langle l \rangle} = \frac{|e|}{2mc} m_l \hbar = m_l \ \mu_B$ - проекции орбитального магнитного момента на ось z

Орбитальный магнитный момент

Гиромагнитное отношение для орбитального движения:

Отношение орбитального магнитного момента к электрона к величине орбитального момента движения

$$g_{l}' = \left| \frac{\mu^{\langle l \rangle}}{M_{L}} \right| = \frac{|e|}{2mc}$$

 $g_{l} = 1$ - орбитальное магнетомеханическое отношение

$$\mu_{z}^{\langle l \rangle} = \frac{|e|}{2mc} m_{l} \hbar = m_{l} \mu_{B} \quad \square \searrow \quad \mu_{z}^{\langle l \rangle} = g_{l} m_{l} \mu_{B}$$

Оболочка многоэлектронного атома

LS-связь – орбитальные и спиновые моменты отдельных электронов складываются в результирующие моменты:

$$\boldsymbol{L} = \Sigma \boldsymbol{l}_i \, \boldsymbol{\mu} \, \boldsymbol{S} = \Sigma \boldsymbol{s}_i.$$

Полный момент количества: **J** = **L** + **S**.

Электростатическое взаимодействие между электронами в оболочке значительно больше магнитного спин-орбитального взаимодействия. Разности энергий состояний оболочки с различными *L* и *S* заметно больше, чем разности энергий состояний с различными *J* – различными взаимными ориентациями *L* и *S*.

Энергия спин-орбитального взаимодействия: λ *L-S*.

Энергетический уровень для какого-то возможного J:

$$\varepsilon = \frac{1}{2}\lambda \left[J(J+1) - L(L+1) - S(S+1) \right]$$

Оболочка многоэлектронного атома

ЈЈ-связь – в оболочках тяжелых химических элементов спинорбитальная связь очень велика, поэтому векторы *l_i* и *s_i* отдельных электронов сначала складываются между собой:

$$\boldsymbol{j_i} = \boldsymbol{l_i} + \boldsymbol{s_{i'}}$$

а затем происходит суммирование **j**_i в суммарный момент атома:

 $\boldsymbol{J}=\boldsymbol{\Sigma}\boldsymbol{j}_i.$

 $\mu_J = \mu_L \cos(\mathbf{L}, \mathbf{J}) + \mu_S \cos(\mathbf{S}, \mathbf{J})$

$$\mu_L = \sqrt{L(L+1)}\mu_B, \quad \mu_S = \sqrt{S(S+1)}\mu_B$$

$$\mu_J = g_J \sqrt{J(J+1)} \mu_B, \quad \mathcal{CO}e$$

 $g_J = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$ -

Эффективный магнитный момент атома – максимальное положительное значение проекции на направление магнитного поля:

$$(\mu_J)_{Makc} = g_J J \mu_B$$

$$\begin{split} g_J = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \\ a) \quad S = 0 \quad \Rightarrow J = L \quad \text{чисто орбитальный магнетизм} \\ g_{J=L} = 1 + \frac{L(L+1) - L(L+1)}{2L(L+1)} = 1 \quad (g_L) \end{split}$$

$$b)$$
 $L=0$ $\Rightarrow J=S$ чисто спиновый магнетизм $g_{J=S}=1+rac{S(S+1)+S(S+1)}{2S(S+1)}=1+1=2$ (g_S)

В металлооксидах как правило L = 0 – орбитальный магнитный момент «заморожен» кристаллическим полем, и работает вариант b)

Эффективный магнитный момент:

$$\mu_{eff} = g_S \mu_B \sqrt{S(S+1)}$$

Сравниваем оценку по этой формуле с оценкой, полученной в эксперименте по исследованию температурной зависимости магнитной восприимчивости $\chi(T)$.

Намагниченость насыщения (максимальная):

$$\mu_S = g_S \mu_B S$$

Сравниваем оценку по этой формуле с оценкой, полученной в эксперименте по исследованию полевой зависимости магнитного момента *M*(*H*).

Эффективный магнитный момент:

$$\mu_{eff} = g_S \mu_B \sqrt{S(S+1)}$$

MnO: Mn²⁺ 3d⁵4s² \rightarrow 3d⁵ S = 5/2

Намагниченость насыщения (максимальная):

$$\mu_S = g_S \mu_B S$$

Эффективный магнитный момент:

$$\mu_{eff} = g_S \mu_B \sqrt{S(S+1)}$$

MnO: $Mn^{2+} \quad 3d^54s^2 \to 3d^5 \quad S = 5/2$ $\mu_{eff} = g_S \mu_B \sqrt{\frac{5}{2} \left(\frac{5}{2} + 1\right)} = g_S \mu_B \sqrt{\frac{35}{4}} = \mu_B \sqrt{35} \approx 5.9 \mu_B$

Намагниченость насыщения (максимальная):

$$\mu_S = g_S \mu_B S$$

Эффективный магнитный момент:

$$\begin{split} \mu_{e\!f\!f} &= g_S \mu_B \sqrt{S(S+1)} \\ \text{MnO:} \qquad & \text{Mn}^{2+} \quad 3\text{d}^5\text{4}\text{s}^2 \rightarrow 3\text{d}^5 \quad \text{S} = 5/2 \\ & \mu_{e\!f\!f} \approx 5.9 \mu_B \end{split}$$

Намагниченость насыщения (максимальная):

$$\mu_{S} = g_{S} \mu_{B} S$$
MnO: Mn²⁺ 3d⁵4s² \rightarrow 3d⁵ S = 5/2

$$\mu_{S} = g_{S} \mu_{B} \frac{5}{2} = 5 \mu_{B}$$

Правила Хунда

- 1) Наименьшей энергией обладает терм с наибольшим значением суммарного спина *S* и с наибольшем при этом *S* значением суммарного орбитального момента *L*.
- 2) Если L и S не равны нулю, то наименьшей энергией обладает уровень с J = | L-S | (если уровень заполнен меньше, чем наполовину) или с J = L + S (если уровень заполнен больше, чем наполовину)

Терм - электронная конфигурация, определяющая энергетический уровень атома или молекулы.

Магнитные моменты нуклонов

Протоны и нейтроны обладают спинами и собственными магнитными моментами, которые служат источниками ядерного магнетизма.

По аналогии с электроном можно было бы ожидать, что протон - заряженная частица со спином $\frac{1}{2}$, будет обладать магнитным моментом равным $\sqrt{3}\mu_{\rm яд}$, где

$$\mu_{_{\mathcal{R}\partial}} = \frac{\left| e \right| \hbar}{2Mc} = \frac{1}{1836} \mu_B$$

Оказалось, что магнитные моменты протона и нейтрона равны соответственно:

$$\mu_p = 2.79 \,\mu_{\scriptscriptstyle R\partial}, \quad \mu_n = 1.91 \mu_{\scriptscriptstyle R\partial}$$

Магнитные моменты атомных ядер

z	Ядро	A	I	μ, μ _{яд}
22 23 24 25 26 27	Ti V Cr Mn Fe Co	47 49 50 51 53 55 57 56≁ 59	$5/2 \\ 7/2 \\ 6 \\ 7/2 \\ 3/2 \\ 5/2 \\ 3/2 \\ 4 \\ 7/2$	$\begin{array}{r} -0,788130(84) \\ -1,10377(12) \\ +3,34702(94) \\ +5,1470(57) \\ -0,74391(42) \\ +3,46766(14) \\ +0,05 \\ 3,855(7) \\ +4,6488(5) \end{array}$
28 29 31 34	Ni Cu Ga Se	60* 61 63 69 71 80	5 3/2 3/2 3/2 3/2 0	+3,80(2) +0,10(10) +2,22664(17) +2,01605(51) +2,56158(26)

Спин ядра *I* – полный момент количества движения, векторная сумма орбитальных моментов нуклонов и их спинов.

- 1. Спин равен нулю ядра с четным числом протонов (Z) и нейтронов (A-Z).
- 2. Нечетное А (массовое число)
 спин I = (n+1/2)ħ, где п
 = 0,1,2...
- Ядра с нечетным числом протонов и нейтронов – спин
 I = пћ, где n = 1,2,3...

$$G = \sqrt{I(I+1)}\hbar, \, \mu_I = g_{_{\mathcal{R}\partial}}\sqrt{I(I+1)}\mu_{_{\mathcal{R}\partial}}$$

Основные типы магнитных состояний вещества

1. Магнетизм слабовзаимодействующих частиц – диамагнетизм и парамагнетизм.

2. Магнетизм коллективизированных электронов – отсутствие магнитного порядка.

3. Вещества с атомным магнитным порядком, обусловленным обменным взаимодействием.

4. Ядерный магнетизм.

- Внешнее магнитное поле воздействует на движущиеся по орбитам электроны. В результате ларморовской прецессии орбит в поле, на каждом атоме возникает добавочный магнитный момент, направленный против поля (χ < 0).
- Диамагнетизм присущ всем атомам, ионам и молекулам, а также их коллективам жидкостям и газам. Как правило, это слабый по сравнению с парамагнетизмом эффект.
- Коллективизированные электроны диамагнетизм Ландау: движение электрона квантуется в направлении, перпендикулярном полю.
- В сверхпроводниках магнитная индукция равна нулю и формально $\chi = -(1/4 \pi)$.

Явление парамагнетизма

- <u>Парамагнитные газы</u> восприимчивость мала, не зависит от магнитного поля, зависит от температуры по закону Кюри.
- <u>Ионный парамагнетизм</u> (жидкие растворы переходных элементов, кристаллы с ионной или неполярной связью, растворы редкоземельных элементов, и пр.) – восприимчивость подчиняется закону Кюри Вейсса. В области высоких полей наблюдаются эффекты магнитного насыщения.
- <u>Парамагнетизм</u> электронов проводимости восприимчивость не зависит от магнитного поля, слабо зависит от температуры.

Парамагнетизм Паули

Вольфганг Паули (1890-1958), Нобелевская премия 1945 г. за открытие «Принципа запрета Паули»: два и более тождественных фермиона не могут одновременно находиться в одном квантовом состоянии.

ε_F ~ 10⁻¹³÷10⁻¹⁴ эрг (10⁴÷10⁵ К)

Ľ

При *T* = 0 в системе *N* электронов заняты N/2 наинизших уровней до уровня с энергией Ферми *ε*_F, на каждом уровне находятся два электрона с противоположными спинами.

Парамагнетизм Паули

Парамагнетизм Паули

Во внешнем магнитном поле *H* + ↑↑ *H* возникает магнитный момент:

$$M_p = \mu_e (N_+ - N_-)$$

из-за разницы количества электронов со спинами вверх и вниз:

$$\pm \mu_e H \frac{v(\varepsilon_F)}{2}$$

Величина магнитного момента и восприимчивость пропорциональны плотности состояний на уровне Ферми:

$$M_p = v(\varepsilon_F) \mu_e^2 H, \quad \chi = v(\varepsilon_F) \mu_B^2$$

Магнитная восприимчивость парамагнетика Паули (металла) не зависит от температуры.

Взаимодействие электронов

Электростатическое взаимодействие

Обменное взаимодействие $\varepsilon_{ex} = -\frac{1}{2}I\hat{S}_i\hat{S}_j$

Обменное взаимодействие зависит от взаимной ориентации спинов электронов. Если *I* > 0, то обменное взаимодействие стремится ориентировать спины электронов параллельно друг другу. Это ведет к усилению парамагнетизма.

$$\chi_{ex} = \frac{\chi_p}{(1 - \lambda \chi_p)}, z \partial e \quad \lambda = \frac{I}{\mu_B^2}$$

Критерий Стонера

При выполнении соотношения:

$$\lambda \chi_{\rm p} \ge 1 (I v(\varepsilon_{\rm F}) \ge 1)$$

в системе коллективизированных электронов в нулевом магнитном поле возникает **ферромагнетизм**. Обменное взаимодействие изменяет энергии подзон (+) и (-), роль магнитного поля играет эффективное поле обменного взаимодействия:

 $H_{\rm mol} = \lambda M$ (молекулярное поле).

Критерий Стонера

При выполнении соотношения:

 $\lambda \chi_{\rm p} \ge 1 (I v(\varepsilon_{\rm F}) \ge 1)$

в системе коллективизированных электронов в нулевом магнитном поле возникает **ферромагнетизм**. Обменное взаимодействие изменяет энергии подзон (+) и (-), роль магнитного поля играет эффективное поле обменного взаимодействия:

 $H_{\rm mol} = \lambda M$ (молекулярное поле).

Условие возникновения ферромагнетизма – большая величина параметра обменного взаимодействия и плотности состояний на уровне Ферми. Обменная энергия должна быть достаточно высока, чтобы скомпенсировать повышение кинетической энергии электронов, переходящих из одной подзоны в другую на более высокие уровни энергии.

Сильные и слабые ферромагнетики

 а) слабые ферромагнетики – расщепление зон невелико. Во внешнем поле оставшиеся в (-) электроны переходят в (+).

б) сильный ферромагнетик – все
 электроны в подзоне (+). Внешнее
 магнитное поле не влияет на число
 электронов, магнитная
 восприимчивость равна нулю

Сдвиг подзон со спинами вверх и вниз – результат обменного взаимодействия в системе электронов проводимости.

Ферромагнетики в ряду 3d металлов

а-Fe (феррит)	1043 К — точка Кюри	(769 °C)
Со	1394 К — точка Кюри	(1121 °C)
Ni	613 К — точка Кюри	(340 °C)

Основной механизм формирования магнитного порядка – перекрывание волновых функции 3*d*-электронов соседних атомов.

Fe, Co, Ni – волновые функции 3*d*-электронов соседних атомов перекрываются и образуется система коллективизированных электронов 3*d* и *s*. Плотность энергетических состояний 3*d*-электронов на уровне Ферми высока, критерий Стонера выполняется.

Ферромагнетики в ряду 3d металлов

а-Fe (феррит)	1043 К — точка Кюри (769 °С)
Со	1394 К — точка Кюри (1121 °C)
Ni	613 К — точка Кюри (340 °C)
Cr	310 К — точка Нееля

Ферромагнетики в ряду 4f металлов

- Gd 289 К точка Кюри
- ТЬ 223 К точка Кюри
- Dy 87 К точка Кюри
- Но 20 К точка Кюри
- Er 19.6 К точка Кюри
- Tm 22 К точка Кюри

Основной механизм формирования магнитного порядка – РККИ взаимодействие: 4f оболочка имеет небольшой размер, существенно меньше межатомного расстояния. Эти оболочки для соседних ионов не могут перекрываться. Обменное взаимодействие создают электроны проводимости, ушедшие с внешней s-оболочки.
Ферромагнетики в ряду 4f металлов

- Gd 289 К точка Кюри
- ТЬ 223 К точка Кюри
- Dy 87 К точка Кюри
- Но 20 К точка Кюри
- Er 19.6 К точка Кюри
- Tm 22 К точка Кюри

При более высоких температурах уже сформирован магнитный порядок, но магнитная структура является неколлинеарной

Антиферромагнетики в ряду 4f металлов

	T _N , K	<i>T</i> _C , K
Tb	230	223
Dy	179	87
Но	133	20
Er	85	19.6
Tm	60	22

В интервале между *T*_N и *T*_C наблюдается спиральная магнитная структура

Ниже Т_с - ферромагнетизм

Металлы 3d, 4f

Электроны внешней s-оболочки – коллективизированные электроны проводимости. Электроны внутренних оболочек – локализованные магнитные моменты.

На языке зонной теории:

оболочка – локальные уровни, локализованные энергетические состояния;

электроны проводимости – энергетическая зона, делокализованные энергетические состояния

В металлах нет «чистых» локализованных состояний магнитных ионов. Поскольку существует взаимодействие электронных оболочек с электронами проводимости (s-d или s-f взаимодействие), то постоянно идет динамический процесс – туннелирование электронов.

s-d взаимодействие

- 1) Если уровни s и d перекрываются, то можно говорить о гибридизации электронных состояний (в случае слабого смешивания уровней – s-d обменном взаимодействии).
- Туннелирование электрона: свободный электрон на короткое время оказывается в связанном состоянии на ионе, затем снова переходит в делокализованное состояние. За время пребывания на ионе электрон испытывает действие внутриатомных обменных сил, связывающих его с другими электронами на оболочке – возникает общий магнитный момент иона.
- Магнитный ион в металле = d-электроны + s-электроны, связанные s-d обменным взаимодействием.
- 2) Если концентрация магнитных ионов велика, то незаполненные оболочки сливаются в узкую зону, то есть dэлектроны делокализованы, локализованных магнитных моментов ионов нет.

Экранировка Кондо, компенсация Нагаоки

Спины s-электронов, окружающих магнитный ион, ориентируются антипараллельно суммарному магнитному моменту иона («антиферромагнитное» облако)

При понижении температуры ниже характерной:

*Т*_К – температуры Кондо

это облако частично нейтрализует магнитный момент иона (в пределе – уменьшает его до нуля).

Такую экранировку разрушает повышение температуры и наличие соседних электронных облаков, которые перекрывают друг друга.

Магнетизм коллективизированных электронов

Металл - сосуществование ионных магнитных моментов и делокализованных магнитных моментов электронов.

<u>Кулоновское отталкивание</u>: динамическое разрежение плотности заряда вокруг каждого электрона, независимо от ориентации спина (корреляционная дырка).

Обменные эффекты, обусловленные принципом Паули:

Электроны с параллельными спинами располагаются значительно дальше друг от друга, чем электроны с антипараллельными спинами. Энергия внутриатомного обменного взаимодействия *U* ~ 1.5 эВ/спин для 3d-электронов – разрежение электронного облака и ослабление кулоновского отталкивания (обменная дырка). Объяснение первого правила Хунда.

Магнетизм коллективизированных электронов

R 3d-металле постоянно происходит квантовое туннелирование электронов между энергетическими состояниями оболочки и делокализованными состояниями зоны. Чем уже ширина зоны, тем более локализованы в ней электроны. Если ширина зоны сравнима с энергией внутриатомного обменного взаимодействия U, то некоторые электроны остаются на ионе достаточно долго и успевают провзаимодействовать друг с другом, ориентировать магнитные моменты, так что у иона ПОЯВИТСЯ магнитный момент. Делокализованные электроны отталкиваются от группы электронов с ориентированными спинами – магнитный момент иона в 3d-металлах сохраняется. Магнетизм в такой конкуренции энергии обменного системе следствие взаимодействия и кинетической энергии электронов.