Квантовые кооперативные явления в металлоксидных соединениях

Лекция 3

Волновые функции s-, p-, и d- состояний

Функции *R*_i зависят только от модуля *r*

Кристаллическое окружение

Магнитный ион в кристалле

Гамильтониан свободного иона, N электронов на оболочке:

$$\hat{\mathscr{H}}_{\text{CBOD- ИСH}} = \sum_{h=1}^{N} \frac{\hat{p}_{h}^{2}}{2m} - \sum_{h=1}^{N} \frac{Ze^{2}}{r_{h}} + \sum_{h>j=1}^{N} \frac{e^{2}}{r_{hj}} = \hat{\mathscr{H}}_{0} + \hat{\mathscr{H}}_{\partial n} \qquad \sim 10^{-11} \text{ эрг}$$

Гамильтониан магнитных взаимодействий:

$$\hat{\mathscr{H}}_{MAr} = \hat{\mathscr{H}}_{LS} + \hat{\mathscr{H}}_{LL} + \hat{\mathscr{H}}_{SS}$$

$$d \sim 10^{-14} \text{ эрг}$$

$$f \sim 10^{-13} \text{ эрг}$$

Гамильтониан кристаллического поля, где $V_{\kappa p}(r_{J})$ – электростатический потенциал поля лигандов:

В зависимости от величин энергетического расщепления, соответствующих электростатическому отталкиванию электронов $H_{_{3Л}}$, лигандному полю $H_{_{KP}}$ и спин-орбитальному взаимодействию $H_{_{LS}}$, различаются частные случаи:

Сильные лигандные поля - $\Delta_{\kappa p} > \Delta_{_{3Л}} >> \Delta_{_{LS}}$ – нарушение правила Хунда, низко-спиновое состояние.

Средние лигандные поля – $\Delta_{3\pi} >> \Delta_{\kappa p} > \Delta_{LS}$ – расщепление в поле меньше, чем расстояние между мультиплетами, но больше, чем расстояние между уровнями.

Слабые лигандные поля - $\Delta_{LS} >> \Delta_{\kappa p}$ – кристаллическое поле слабо возмущает мультиплетную структуру и не может разрушить спин-орбитальную связь на *f* – оболочке.

Расщепление уровней в октаэдрическом поле

Максимумы электронной плотности орбиталей d_{xy} , d_{xz} , d_{yz} направлены между лигандами. Максимумы электронной плотности на d_{z^2} и $d_{x^2-y^2}$ направлены на лиганды. Электроны на этих орбиталях будут сильнее отталкиваться от лигандов, их уровни энергии лежат выше в октаэдрическом поле.

Расщепление уровней в октаэдрическом поле

Электроны на орбиталях группы e_g (d_{z^2} и $d_{x^2-y^2}$) будут сильнее отталкиваться от лигандов, их уровни энергии лежат выше в октаэдрическом поле, чем уровни группы орбиталей t_{2g} (d_{xy} , d_{xz} , d_{yz}).

Расщепление *d*-орбиталей в октаэдрическом и тетраэдрическом окружении

Группы орбиталей e_{g} (d_{z^2} , $d_{x^2-y^2}$)и t_{2g} (d_{xy} , d_{yz} , d_{xz}) меняются местами в кислородном тетраэдре и в октаэдре

Искажение октаэдра

Тетрагональное искажение – растяжение октаэдра вдоль Z, ромбическое искажение – растяжение октаэдра вдоль Y.

Расщепление *d*-орбиталей в полях различной симметрии

Концепция локализованного магнетизма

Магнетизм локализованных на ионах магнитных моментов.

Металлооксидные соединения.

Ионная связь.

Взаимодействие между магнитными моментами осуществляется через лиганды.

- 1. Является ли данный ион магнитным в соединении?
- 2. В каком окружении он находится?
- 3. Как возможно организовать взаимодействие с другими магнитными ионами?

Соединения со структурой перовскита

Общая формула АВС₃ Кубическая кристаллическая структура Для металлооксидов - *ABO*₃ Магнитные ионы в позиции В образуют простую кубическую решетку Окружение В-позиций – правильный октаэдр ионов в позициях С LaMnO₃ KCuF₃

Соединения со структурой перовскита

Соединения со структурой перовскита

Общая формула: АВ₂О₄

Кубическая или тетрагональная кристаллическая структура

Окружение А-позиций – тетраэдр ионов кислорода Окружение В-позиций – правильный октаэдр ионов кислорода

Полиэдрическое представление структуры шпинели Окружение А-позиций – тетраэдр ионов кислорода Окружение В-позиций – правильный октаэдр ионов кислорода

> $MgTi_2O_4$ $NiFe_2O_4$ Mn_3O_4

 $MgTi_2O_4$ Ti³⁺ 3d¹ S = $\frac{1}{2}$

Ион титана занимает позицию типа В – в кислородном октаэдре

Обращенная шпинель: ион 2+ размещается в октаэдре, половина ионов 3+ занимает позиции в октаэдре, а половина – в тетраэдре

Соединения со структурой рутила

Общая формула: АВ₂

Тетрагональная кристаллическая структура Ионы в позиции А находятся в октаэдрическом окружении ионов В и образуют объемноцентрированную решетку

Соединения со структурой рутила

$$TiO_2$$

Ti⁴⁺ 3d⁰ S = 0

$$NiF_2$$

Ni⁴⁺ 3d⁶ S = 2

Соединения со структурой рутила

 $CuCl_2$ Cu^{2+} $3d^9$ $S = \frac{1}{2}$

Основное состояние твердого тела

С понижением температуры квантовомеханическая система занимает наиболее энергетически выгодное, максимально упорядоченное ОСНОВНОЕ СОСТОЯНИЕ. Энтропия системы убывает по мере уменьшения температуры. Способы формирования основного состояния – в зависимости от конкретной ситуации: без фазового перехода или при помощи фазовых превращений.

Температура – разупорядочивающий фактор.

Магнитное поле – упорядочивающее действие для магнитной подсистемы.

Зарядовое упорядочение Орбитальное упорядочение

Магнитное упорядочение

Магнетизм и эффект Яна-Теллера

Эффект Яна-Теллера – круг явлений, связанных с особенностями поведения систем с вырожденными электронными состояниями. Симметричная конфигурация атомов в твердом теле оказывается нестабильной. Возникает специфическое электрон-решеточное взаимодействие, которое может привести к структурному фазовому переходу с понижением симметрии кристалла.

В магнитных системах этот эффект может определять не только структурные, но и магнитные свойства. С другой стороны, обменное взаимодействие в магнетиках может существенно повлиять на кристаллическую структуру и индуцировать структурные фазовые превращения.

Орбитальное вырождение

Встречается много магнитных систем, содержащих ионы с орбитальным вырождением – Ян-Теллеровские ионы. Свойства таких систем во много отличаются от невырожденных случаев:

- Кристаллическая структура искажена, низкая симметрия
- Происходят структурные фазовые переходы
- Магнитная структура оказывается сложной
- Часто наблюдается аномально сильная магнитная анизотропия и магнитострикция

Низкая симметрия и структурные фазовые переходы характерны для Ян-Теллеровских систем. Такие явления связаны с взаимодействием Ян-Теллеровских ионов и кооперативным эффектом Яна-Теллера. называются разнообразных структурных превращений Среди В твердом теле КЭЯТ является уникальным, поскольку микроскопическая структура этого перехода точно известна. Зная только химический состав кристалла возможно однозначно предсказать наличие В нем структурного перехода с понижением симметрии.

Невырожденные состояния в октаэдре:

Невырожденные состояния в тетраэдре:

Невырожденные состояния в октаэдре: d^3, d^5, d^8 Невырожденные состояния в тетраэдре: d^2, d^5, d^7

Все остальные – **двукратно вырождены**, если один электрон или дырка на *e*_q орбиталях:

Невырожденные состояния в октаэдре: d^3, d^5, d^8 Невырожденные состояния в тетраэдре: d^2, d^5, d^7 Двукратно вырожденные состояния в октаэдре: d^4, d^9 Двукратно вырожденные состояния в тетраэдре: d^1, d^6

или **трехкратно вырождены**, если один или два электрона (дырки) на t_{2q}

Невырожденные состояния в октаэдре: d^3, d^5, d^8 Невырожденные состояния в тетраэдре: d^2, d^5, d^8 Двукратно вырожденные состояния в октаэдре: d^4, d^9 Двукратно вырожденные состояния в тетраэдре: d^1, d^6

или **трехкратно вырождены**, если один или два электрона (дырки) на t_{2q}

Состояния	Октаэдр	Тетраэдр
Невырожденные	<i>d</i> ³ , <i>d</i> ⁵ , <i>d</i> ⁸	d ² ,d ⁵ , d ⁷
Двукратно вырожденные	<i>d</i> ⁴ , <i>d</i> ⁹	d^1, d^6
Трехкратно вырожденные	d ¹ ,d ² ,d ⁶ ,d ⁷	d ³ ,d ⁴ ,d ⁸ ,d ⁹

В октаэдрическом окружении

В тетраэдрическом окружении

Эффект Яна-Теллера для одиночного иона

Если основное состояние двукратно вырождено, то понижение симметрии, характеризуемое деформацией решетки δ , приведет к расщеплению уровней на величину ~ δ . При этом проигрыш в упругой энергии решетки составит ~ δ^2 .

Симметричная конфигурация ($\delta = 0$)

Деформации кислородного окружения нет, магнитный ион в правильном октаэдре (тетраэдре)

Эффект Яна-Теллера для одиночного иона

Если основное состояние двукратно вырождено, то понижение симметрии, характеризуемое деформацией решетки δ , приведет к расщеплению уровней на величину ~ δ . При этом проигрыш в упругой энергии решетки составит ~ δ^2 .

То есть симметричная конфигурация (δ = 0) всегда неустойчива, и в системе с вырожденными уровнями произойдет структурный переход с понижением симметрии.

Эффект Яна-Теллера для одиночного иона

Эффект Яна-Теллера обусловлен взаимодействием электронов на вырожденном *d*-уровне с колебаниями решетки.

В случае одного электрона на *e*_g уровнях в октаэдрическом окружении лигандов:

а) электрон на
$$d_z^2$$

б) электрон на
$$d_{x^2-y^2}$$

Есть еще одна мода колебаний лигандов, стабилизирующая некоторую суперпозицию d_{z^2} и $d_{x^2-v^2}$

В системах содержащих концентрированные Ян-Теллеровские ионы расщепление орбиталей на соседних узлах не является независимым. Между соседними узлами есть взаимодействие, которое приводит к кооперативным эффектам Яна-Теллера и к связанным с ними фазовым переходам. Для кооперативного эффекта характерно понижение симметрии кристалла, орбитальное упорядочение. Заполнение одной из орбиталей приводит к перераспределению заряда и на ионе появляется квадрупольный момент.

Электрон-решеточное взаимодействие

Квадрупольное взаимодействие

Обменное взаимодействие

Электрон-решеточное взаимодействие между Ян-Теллеровскими ионами.

Деформации, вызванные разными ионами взаимодействуют между собой.

Смещение катиона, расположенного в общей вершине соседних октаэдров, стабилизирует разные орбитали на соседних центрах. «Антиферро»-орбитальное упорядочение.

Локальные колебания катионов превращаются в фононы, распространяющиеся по всему кристаллу. Фононы переносят взаимодействие между Ян-Теллеровскими ионами

В структуре перовскита октаэдры имеют общую вершину, и «антиферро»упорядочение орбиталей более выгодно.

В структуре шпинели октаэдры имеют общее ребро, и «ферро»-упорядочение орбиталей более выгодно.
Учет обменного взаимодействия

В системах с орбитальным вырождением – в зависимости от заполнения орбиталей знак и величина обменного взаимодействия меняются, и правила Гуденафа не дают ответа на вопрос о характере обмена.

Обменное взаимодействие может снять вырождение и в системе установится и орбитальное, и спиновое упорядочение.

Для любых систем – и с вырождением, и без, - можно использовать модель Хаббарда, в которой рассматриваются виртуальные переходы электронов с одного иона на другой. Определяющим фактором является выигрыш в энергии за счет такого перехода.

Модель Хаббарда

Выигрыш в энергии при виртуальном переходе электрона с одного иона на другой определяется величиной эффективного интеграла перехода t. Энергия Кулоновского отталкивания электронов на одном ионе – U. Как правило в магнитных диэлектриках t << U.

В невырожденном случае: переход типа **а) запрещен**,

перескок в случае **б) разрешен**, и возникает выигрыш в энергии, соответствующий выгодности антиферромагнитного обмена.

Некоторые примеры систем Ян-Теллера

КСиF₃ – перовскит, кубическая структура с тетрагональными искажениями. (Си²⁺ 3d⁹) Магнитная структура – квазиодномерный антиферромагнетик, обменное взаимодействие вдоль оси *z* значительно больше, чем в базисной плоскости.

LaMnO₃ – перовскит, при $T_{\rm C}$ = 900 К происходит структурный переход с понижением симметрии с кубической до орторомбической. (Mn³⁺ 3d⁴) Неелевский магнитный порядок.

 Mn_3O_4 – шпинель, переход из кубической в тетрагональную фазу при $T_C = 1143$ К. ($Mn^{3+} 3d^4$) Яфет-киттелевская магнитная структура.

CrCl₂ – рутил, орторомбические искажения кристаллической структуры. (Cr²⁺ 3d⁴) Магнитная структура – антиферромагнетик с чередующимися ферромагнитными плоскостями (110).

 $Ca_3Mn_2Ge_3O_{12}$ – гранат, переход из кубической в тетрагональную фазу при $T_C = 400$ К. ($Mn^{3+} 3d^4$) Сложная неколлинеарная магнитная структура, моменты лежат на конусе вокруг оси *с*.

Орбитальное упорядочение в перовскитах

LaMnO₃ – перовскит, при $T_{\rm C}$ = 900 К происходит структурный переход с понижением симметрии с кубической до орторомбической (**Mn³⁺ 3d⁴**) и устанавливается Неелевский магнитный порядок при $T_{\rm N}$ = 141 К.

Магнитная структура – ФМ слои связанные АФМ: плоскости (100) имеют противоположные направления магнитных моментов.

Орбитальное упорядочение в шпинелях

Обычная шпинель:

 $NiFe_2O_4$ – кубическая кристаллическая структура, $T_N = 858$ К антиферромагнетик.

Ян-Теллеровская шпинель:

 Mn_3O_4 – шпинель, переход из кубической в тетрагональную фазу при T_C = 1143 К. (Mn^{3+} $3d^4$) Яфет-киттелевская магнитная структура.

Орбитальное упорядочение в рутилах

Обычный рутил:

NiF₂ – тетрагональная кристаллическая структура, антиферромагнетик.

Ян-Теллеровские рутилы:

CrCl2– тетрагональная структура с орторомбическимиискажениями.(Cr2+3d4)Антиферромагнетикчередующимися ферромагнитными плоскостями (110).

CuF₂ – тетрагональная структура с моноклинными искажениями. (Cu²⁺ 3d⁹). Антиферромагнетик, магнитная решетка удвоена по сравнению с кристаллографической.

Ионы с частичным заполнением t_{2g} уровней – в октаэдрическом окружении:

В этих состояниях $I_{eff} = 1$ и снятие вырождения может происходить двумя способами: за счет спин-орбитального или Ян-Теллеровского взаимодействия.

а) Сжатие октаэдра вдоль z, деформация выгодна с точки зрения ЯТ, основное состояние с $I_z = 0$, спин-орбитальное взаимодействие неэффективно;

6) растяжение октаэдра, деформация менее выгодна с точки зрения ЯТ, но основное состояние с $l^z = \pm 1$ и возможно дальнейшее расщепление уровней за счет спин-орбитального взаимодействия.

В системах с вырождением t_{2g} уровней могут происходить два типа переходов – по Ян-Теллеровскому каналу и по каналу *LS*. Переход Яна-Теллера является чисто структурным, а магнитное упорядочение происходит при более низкой температуре. Такие переходы происходят, например, в шпинелях, где магнитные ионы в А-узлах находятся в тетраэдрическом окружении NiCr₂O₄ (Ni²⁺), CuRh₂O₄ (Cu²⁺).

Переходы, определяемые спин-орбитальным упорядочением, происходят одновременно с магнитным упорядочением, в точке Кюри или Нееля: если спины упорядочиваются, например, вдоль оси z, то за счет LS стабилизируются орбитали $l^z = \pm 1$ и возникает деформация решетки. Этот эффект выглядит как магнитострикция при магнитном упорядочении, однако природа эффекта другая и величина деформации на порядок больше, чем в невырожденном случае. Спин орбитальное взаимодействие тем эффективнее, чем больше спин, например, для Fe²⁺ (S=2), Co³⁺ (S=2/3) в октаэдре оно определяющее.

Соединения со структурой пироксена

Семейство магнитных соединений со структурой пироксена:

 $(\text{Li},\text{Na})\mathbf{M}(\text{Si},\text{Ge})_{2}\text{O}_{6}$ $(\mathbf{M} = \text{Sc}, \text{Ti}, \text{V}, \text{Cr}, \text{Mn}, \text{Fe})$ $(\text{Li},\text{Na})^{+1} (\text{Si},\text{Ge})^{+4}$ $\begin{pmatrix} \text{Sc}^{3+} & 3d^{0} \\ \text{Ti}^{3+} & 3d^{1} \\ \text{V}^{3+} & 3d^{2} \\ \text{Cr}^{3+} & 3d^{3} \\ \text{Mn}^{3+} & 3d^{4} \\ \text{Fe}^{3+} & 3d^{5} \end{pmatrix}$

Соединения со структурой пироксена

Семейство магнитных соединений со структурой пироксена:

 $(Li,Na)\mathbf{M}(Si,Ge)_2O_6$ (**M** = Sc, Ti, V, Cr, Mn, Fe)

Пироксены входят в состав горных пород на Земле, они обнаружены на Луне, планетах, в метеоритах:

NaCrSi₂O₆ – минерал космохлор, был впервые обнаружен в чистом виде в составе метеорита

 $NaAlSi_2O_6$ – минерал жадеит

(нефрит, Chinese jade)

Кристаллическая структура пироксенов

Моноклинная кристаллическая решетка

$$(a \neq b \neq c, \beta \neq 90^{\circ}).$$

Кристаллическая структура пироксенов

В структуре содержатся октаэдры MO₆, соединенные по ребру.

Октаэдры формируют изолированные винтовые цепочки.

Между ними расположены тетраэдры (Si,Ge)O₄.

Ионы Na, Li располагаются в тоннелях.

- За магнитный обмен между ближайшими соседями отвечают два взаимодействия:
- 1) Прямое перекрытие $t_{2g} t_{2g}$ орбиталей на соседних центрах антиферромагнитное взаимодействие;
- 2) Суперобмен М О М, угол связи 90° ферромагнитное или антиферромагнитное взаимодействие.

Суперобмен М – О – М, угол связи 90° в случае пироксенов может быть и ферромагнитным и антиферромагнитным. Это зависит от заполнения d-орбиталей электронами и от того одна или две орбитали кислорода задействованы.

Мы рассматривали «классический» случай ФМ обмена:

угол M – O – M = 90°

задействованы две орбитали кислорода,

орбитали металла заполнены.

Суперобмен М – О – М, угол связи 90° в случае пироксенов может быть и ферромагнитным и антиферромагнитным. Это зависит от заполнения d-орбиталей электронами и от того одна или две орбитали кислорода задействованы.

Магнитную структуру всего вещества формируют два взаимодействия:

- Взаимодействие магнитных моментов внутри одной изолированной цепочки;
- Взаимодействие между цепочками.

Эти взаимодействия имеют разный масштаб (*J*_{intra} и *J*_{inter}) и могут отличаться знаком. В результате вещество может быть и ФМ и АФМ.

Магнитная подсистема пироксенов низкоразмерная – она содержит изолированные цепочки магнитных ионов. Поведение $\chi(T)$ будет принципиально отличаться от классического ФМ или АФМ:

При высоких *T* справедлив закон Кюри-Вейсса.

При понижении *T* χ (*T*) проходит через пологий максимум – формируется ближний порядок в цепочке.

Фазового перехода в упорядоченное состояние нет (модельный расчет).

При $T \to 0$ восприимчивость спадает на ~15% от максимума.

В реальных веществах (в отличие от модели) «срабатывает» взаимодействие между цепочками и дальний порядок формируется при $T_{\rm N,C} << \Theta_{\rm CW}$.

Пироксены на базе ванадия

Li $CrSi_2O_6 - A\Phi M, T_N = 11.5 K$ Li $CrGe_2O_6 - A\Phi M, T_N = 4 K$ **NaCrGe_2O_6 - \Phi M, T_C = 6 K NaCrSi_2O_6 - A\Phi M, T_N = 2.8 K**

Пироксены на базе титана

Орбитальное упорядочение в NaTiSi₂O₆

Соединение семейства пироксенов, моноклинная кристаллическая решетка. В структуре содержатся одномерные цепочки октаэдров Ti³⁺O₆, соединенных по ребру. Цепочки изолированы одна от другой - между ними расположены тетраэдры SiO₄.

При понижении температуры при *T* ~ 210 К происходит структурный переход с понижением симметрии до триклинной.

Электрон занимает *d*_{ху} орбиталь и цепочка разрывается на пары ионов – формируются магнитные димеры.

Магнитная восприимчивость NaTiSi₂O₆

При понижении температуры восприимчивость экспоненциально спадает.

В области низких температур наблюдается рост восприимчивости, вызванный присутствием незначительного числа дефектов, которые «работают» как парамагнитная примесь.

Моделирование восприимчивости NaTiSi₂O₆

Восприимчивость отклоняется от закона Кюри-Вейсса при высоких *Т*.

Для изолированных цепочек должна работать модель Боннер-Фишера (сплошная линия), но и она не описывает поведение магнитной восприимчивости.

Моделирование восприимчивости NaTiSi₂O₆

Поведение восприимчивости описывается суммой двух вкладов:

1) Вклад парамагнитных дефектов, количество ~ 1%;

2) Вклад самого вещества: $\chi \sim e^{-\frac{\Delta}{T}}$

где *∆* ~ 500 К - щель в спектре магнитных возбуждений.

В NaTiSi₂O₆ присутствует щель в спектре магнитных возбуждений. Основное состояние, отделенное щелью от возбужденных, немагнитное (синглетное). Восприимчивость экспоненциально спадает до нуля. Такое поведение является магнитным аналогом сверхпроводимости.

Структурный фазовый переход в NaTiSi₂O₆

Высокие температуры, орбитальное вырождение в NaTiSi₂O₆

Сохраняются орбитальные степени свободы на t_{2q} группе орбиталей

Изменение конфигурации при структурном переходе

Низкие температуры, вырождение снято

По данным структурного анализа, ниже перехода орбиталь $d_{\rm xy}$ становится наиболее энергетически выгодной

Основное состояние NaTiSi₂O₆

При высоких температурах расстояния между ионами титана в цепочке были одинаковыми (3.17 А).

 \bigcirc - - \bigcirc - - \bigcirc

Ниже структурного перехода в цепочке происходит альтернирование расстояний Ti-Ti: 3.05 A 3.22 A 3.05 A

 $\bigcirc - \bigcirc - - - - \bigcirc - \bigcirc$

Два близко расположенных иона титана формируют димер Ті³⁺- Ті³⁺. Взаимодействие между ионами антиферромагнитное за счет прямого перекрытия орбиталей t_{2q} .

Основное состояние пироксенов на базе титана

Немагнитное основное состояние в пироксенах на базе титана формируется в результате Ян-Теллеровского искажения кристаллической решетки и, как следствие, орбитального упорядочения.

Основное состояние отделено энергетической щелью от возбужденных, оно немагнитное (синглетное).

Такое поведение является магнитным аналогом сверхпроводимости.