Квантовые кооперативные явления в металлоксидных соединениях

Лекция 5

Магнитные системы пониженной размерности

•Размерность О: парамагнитный газ изолированных магнитных

- ионов, димеры, кластеры
- •Размерность 1: магнитные цепочки и лестницы
- Размерность 2: плоские магнитные системы
- Размерность 3: «классические» магнетики

Основное состояние магнитной системы размерности 1

К магнитным системам с размерностью 1D относятся линейные и зигзаговые цепочки магнитных ионов, цепочки с альтернированным взаимодействием, двойные цепочки (спиновые лестницы), а также комбинации этих элементов. В этих системах наиболее важным является взаимодействие ближайших магнитных ионов, отстоящих друг от друга на 1 - 2 периода структуры.

Благодаря уникальной возможности точного решения задачи Изинга в одномерном случае, теория свойств одномерной магнитной цепочки со спином *S* = 1/2 подробно разработана, сделано множество численных расчетов, и эти результаты подтверждены экспериментально.

Усложнение магнитной структуры и реальные взаимодействия между низкоразмерными элементами в 3D кристалле приводят к появлению совершенно новых свойств в этих системах.

Точное решение задачи Изинга в одномерном случае

Линейная бесконечная цепочка магнитных атомов с полуцелочисленным спином, связанных антиферромагнитным обменным взаимодействием *J*.

Важным результатом точного решения в 1D случае является то, что решение, соответствующее появлению спонтанной намагниченности в системе при $T \neq 0$, отсутствует, то есть **линейная бесконечная цепочка магнитных атомов не упорядочивается при любой конечной температуре**. Основное состояние достигается только при T = 0,

щели в энергетическом спектре магнитных возбуждений нет.

Цепочка спинов S-1/2

Для модели Изинга можем использовать точное решение, для модели Гейзенберга – численный расчет для кольца *N* спинов. В рамках обеих моделей эффекты дальнего порядка не проявляются даже при самых низких температурах.

Получаем выражения для магнитной восприимчивости:

Модель Изинга (Фишер):

$$\chi_{\parallel} = \frac{Ng^2 \parallel \mu_B^2}{2J} \frac{J}{2kT} e^{\frac{J}{kT}}, \quad \chi_{\perp} = \frac{Ng^2 \perp \mu_B^2}{4J} \left[th\left(\frac{J}{2kT}\right) + \frac{J}{2kT} sch^2\left(\frac{J}{2kT}\right) \right]$$

<u>Модель Гейзенберга</u> (Боннер и Фишер) – кривая с максимумом, положение которого определяется формулой:

$$\chi_{\max} \frac{|J|}{g^2 \mu_B^2} \approx 0.7346, \quad \frac{kT_{\max}}{|J|} \approx 1.282$$

Цепочка спинов S-1/2

Магнитная восприимчивость цепочки спинов S-1/2

Модель Изинга

Модель Гейзенберга

Цепочка спинов S-1/2

Квазиодномерная цепочка спинов S-1/2

Примеры систем, содержащих

цепочки спинов *S*-1/2:

KCuF₃, CsCoBr₃, CuGeO₃ Cs₂CuCl₄, Sr₂IrO₄ CHAC, CHAB Sr₂CuO₃

Sr • Cu 00

Квазиодномерная цепочка спинов *S*-1/2

Идеальных одномерных цепочек в реальных веществах не существует. Достаточно небольшого отклонения – любого типа анизотропия кристалла, слабые взаимодействия между отдельными цепочками – чтобы при достаточно низких температурах произошло установление обычного трехмерного дальнего магнитного порядка.

Мерой идеальности системы может служить степень альтернирования цепочки, равная отношению величины взаимодействия между цепочками J' к обменному интегралу в цепочке: $\alpha = J'/J$. В случае идеальной цепочки $\alpha \to 0$.

Примеры систем Изинга, содержащих цепочки спинов *S*- ¹⁄₂, связанные слабым взаимодействием

В КСиF₃ - соединении со структурой перовскита - цепочки октаэдров CuF₆, вытянуты вдоль оси *с*, обменный интеграл в цепочке J = 203 К, альтернирование $\alpha = -0.01$ температура упорядочения $T_N = 38$ К.

B CsCoCl₃: $\alpha \sim 0.01$, $T_{\rm N} = 23$ K.

В CsCoBr₃, существуют две критические температуры:

 $T_{N1} = 28.3$ К, $T_{N2} = 10$ К - установление магнитного порядка происходит в два этапа:

выше T_{N1} ионы Со антиферромагнитно взаимодействуют в цепочке вдоль оси c (J = 597.8 K),

1) в области $T_{N2} < T < T_{N1}$ треть цепочек остается не упорядоченной, а две трети цепочек антиферромагнитно взаимодействуют в плоскости *ab*.

2) при *T* < *T_{N2}* все магнитные ионы образуют треугольную антиферромагнитно упорядоченную решетку.

 $T \sim J_{//}$ появляются правильно расположенные соседние спины

T << *J*_{//} размер правильных фрагментов растет, беспорядок остается

T ~ *J*_⊥ срабатывает взаимодействие между цепочками

 $T < J_{\perp}$ фазовый переход в упорядоченное состояние при $T_{\rm N}$

Однородные и альтернированные цепочки магнитных ионов

Однородная цепочка:

- расстояния между ионами одинаковые,
- единственный обменный интеграл J между $S_{\rm i}$ $S_{\rm i+1}$ и $S_{\rm i}$ $S_{\rm i-1}$

Альтернированная цепочка:

- расстояния между ионами чередуются,
- два обменных интеграла:

J' между $S_i - S_{i+1}$ и

J между *S*_i − *S*_{i-1}

Магнитная восприимчивость цепочки с альтернированным обменом

Теплоемкость цепочки с альтернированным обменом

1993 - Hase, Terasaki, Uchinokura

 $CuGeO_3$: однородные магнитные цепочки ионов Cu^{2+} (S - $\frac{1}{2}$).

В цепочках сохраняется беспорядок вплоть до T = 0, $\Delta = 0 - 0$ основное состояние нестабильно.

При $T_{\rm C} \sim 14$ К происходит фазовый переход спин-Пайерлсовского типа: период цепочки альтернируется и открывается щель в спектре магнитных возбуждений ($\Delta \neq 0$). Вещество переходит в немагнитное основное состояние.

Механизмом формирования синглетного основного состояния в CuGeO₃ является магнитоупругое взаимодействие в изначально нестабильной цепочке спинов S - ¹/₂.

Одномерные однородные цепочки октаэдров CuO₆ и разделяющие их цепочки тетраэдров GeO₄ вытянуты вдоль оси *с*.

Переход Пайерлса в 1D металле

Затравочный потенциал, в котором находятся все электроны в твердом теле, создается ионными остовами. Неравномерное распределение электронов в пространстве приводит к появлению дополнительных электрических полей и к перенормировке затравочного потенциала. В металлах, где концентрация делокализованных электронов очень велика, считается, что электроны находятся в слабом псевдопотенциале, который сильно экранирован по сравнению с тем, что создают ионные основы.

Воздействие электронов на собственный энергетический спектр не ограничивается простым экранированием. Электроны могут существенно изменить затравочный потенциал, даже понизить его симметрию. Самый яркий пример - это переход Пайерлса в одномерном металле.

Переход Пайерлса в 1D металле

Зона Бриллюэна – отрезок (- π/a , π/a).

N уровней, на каждом уровне могут находиться два электрона ($m_{\rm S} = \pm \frac{1}{2}$) $\rightarrow 2N$ мест, зона заполнена наполовину ($-\pi/2a$, $\pi/2a$).

Переход Пайерлса в 1D металле

В зоне Бриллюэна появилась дополнительная граница (- $\pi/2a$, $\pi/2a$). На границе в спектре имеется щель.

Энергия свободных состояний ($|k| > \pi/2a$) повысилась, энергия занятых состояний ($|k| < \pi/2a$) понизилась, то есть получился выигрыш в энергии системы. Металл стал изолятором.

На магнитной восприимчивости наблюдается широкий максимум при $T_{\max} \sim 56$ К, а затем резкий спад $\chi(T) \rightarrow 0$ по всем направлениям в кристалле.

Оценка обменного интеграла в цепочке по $T_{\rm max}$: $J_{\rm c}$ ~ 88 K.

Аппроксимация по модели Гейзенберга для 1D цепочки (кривая Боннер-Фишера) показана сплошной линией.

Смещения ионов ионов О в плоскости *ab* и Cu вдоль оси *c*, приводящие к новому состоянию, очень малы.

Результирующая деформация – попеременное вращение тетраэдров GeO₄ вокруг оси, соединяющей апикальные ионы кислорода.

Фазовая диаграмма CuGeO₃:

<u>U (uniform</u>) однородная фаза, ближний антиферромагнитный порядок в цепочках;

<u>D (dimerized)</u> димеризованная фаза, немагнитная, макроскопический магнитный момент отсутствует;

I (incommensurate) несоизмеримая фаза, присутствует макроскопический магнитный момент, период магнитной структуры несоизмерим с периодом решетки.

Фазовая диаграмма CuGeO₃:

H_{C1} = 12,5 Тл: в первом критическом поле разрушается небольшая часть димеров, и появляются магнитные моменты, распределенные по цепочкам. С ростом поля число неспаренных моментов растет, расстояние между ними уменьшается.

*H*_{C2} = 250 Тл: димеризованное состояние полностью разрушено.

Соединения со структурой пироксена

Семейство магнитных соединений со структурой пироксена:

 $(Li,Na)\mathbf{M}(Si,Ge)_2O_6$ $(\mathbf{M} = \mathbf{Sc}, \mathbf{Ti}, \mathbf{V}, \mathbf{Cr}, \mathbf{Mn}, \mathbf{Fe})$ (Li,Na)⁺¹ (Si,Ge)⁺⁴ $M^{3+} = \begin{cases} Sc^{3+} & 3d^{0} \\ Ti^{3+} & 3d^{1} \\ V^{3+} & 3d^{2} \\ Cr^{3+} & 3d^{3} \\ Mn^{3+} & 3d^{4} \\ Fe^{3+} & 3d^{5} \end{cases}$

Кристаллическая структура пироксенов

В структуре содержатся октаэдры MO₆, соединенные по ребру.

Октаэдры формируют изолированные винтовые цепочки.

Между ними расположены тетраэдры (Si,Ge)O₄.

Ионы Na, Li располагаются в тоннелях.

- За магнитный обмен между ближайшими соседями отвечают два взаимодействия:
- 1) Прямое перекрытие $t_{2g} t_{2g}$ орбиталей на соседних центрах антиферромагнитное взаимодействие;
- 2) Суперобмен М О М, угол связи 90° ферромагнитное или антиферромагнитное взаимодействие.

Суперобмен М – О – М, угол связи 90° в случае пироксенов может быть и ферромагнитным и антиферромагнитным. Это зависит от заполнения d-орбиталей электронами и от того одна или две орбитали кислорода задействованы.

Мы рассматривали «классический» случай ФМ обмена:

угол $M - O - M = 90^{\circ}$

задействованы две орбитали кислорода,

орбитали металла заполнены.

Суперобмен М – О – М, угол связи 90° в случае пироксенов может быть и ферромагнитным и антиферромагнитным. Это зависит от заполнения d-орбиталей электронами и от того одна или две орбитали кислорода задействованы.

- Магнитную структуру всего вещества формируют два взаимодействия:
- Взаимодействие магнитных моментов внутри одной изолированной цепочки;
- Взаимодействие между цепочками.

Эти взаимодействия имеют разный масштаб (*J*_{intra} и *J*_{inter}) и могут отличаться знаком. В результате вещество может быть и ФМ и АФМ.

Магнитная подсистема пироксенов низкоразмерная – она содержит изолированные цепочки магнитных ионов. Поведение $\chi(T)$ будет принципиально отличаться от классического ФМ или АФМ:

При высоких *T* справедлив закон Кюри-Вейсса.

При понижении *T* $\chi(T)$ проходит через пологий максимум – формируется ближний порядок в цепочке.

Пироксены на базе ванадия

Пироксены на базе ванадия

Пироксены на базе хрома

Орбитальное упорядочение в NaTiSi₂O₆

Соединение семейства пироксенов, моноклинная кристаллическая решетка. В структуре содержатся одномерные цепочки октаэдров Ti³⁺O₆, соединенных по ребру. Цепочки изолированы одна от другой - между ними расположены тетраэдры SiO₄.

При понижении температуры при *T* ~ 210 К происходит структурный переход с понижением симметрии до триклинной.

Электрон занимает d_{xy} орбиталь и цепочка разрывается на пары ионов – формируются магнитные димеры.

Магнитная восприимчивость NaTiSi₂O₆

При понижении температуры восприимчивость экспоненциально спадает.

В области низких температур наблюдается рост восприимчивости, вызванный присутствием незначительного числа дефектов, которые «работают» как парамагнитная примесь.

Моделирование восприимчивости NaTiSi₂O₆

Восприимчивость отклоняется от закона Кюри-Вейсса при высоких *Т*.

Для изолированных цепочек должна работать модель Боннер-Фишера (сплошная линия), но и она не описывает поведение магнитной восприимчивости.

Моделирование восприимчивости NaTiSi₂O₆

В NaTiSi₂O₆ присутствует щель в спектре магнитных возбуждений. Основное состояние, отделенное щелью от возбужденных, немагнитное (синглетное). Восприимчивость экспоненциально спадает до нуля. Такое поведение является магнитным аналогом сверхпроводимости.

Структурный фазовый переход в NaTiSi₂O₆

Высокие температуры, орбитальное вырождение в NaTiSi₂O₆

Сохраняются орбитальные степени свободы на t_{2g} группе орбиталей

Изменение конфигурации при структурном переходе

Низкие температуры, вырождение снято

По данным структурного анализа, ниже перехода орбиталь d_{xy} становится наиболее энергетически выгодной

Основное состояние NaTiSi₂O₆

При высоких температурах расстояния между ионами титана в цепочке были одинаковыми (3.17 А).

 $\bigcirc --\bigcirc --\bigcirc --\bigcirc$

Ниже структурного перехода в цепочке происходит альтернирование расстояний Ti-Ti: 3.05 A 3.22 A 3.05 A

 $\bigcirc - \bigcirc - - - - \bigcirc - \bigcirc$

Два близко расположенных иона титана формируют димер Ті³⁺- Ті³⁺. Взаимодействие между ионами антиферромагнитное за счет прямого перекрытия орбиталей t_{2q} .

Основное состояние пироксенов на базе титана

Немагнитное основное состояние в пироксенах на базе титана формируется в результате Ян-Теллеровского искажения кристаллической решетки и, как следствие, орбитального упорядочения.

Основное состояние отделено энергетической щелью от возбужденных, оно немагнитное (синглетное).

Такое поведение является магнитным аналогом сверхпроводимости.

Зигзаговые магнитные цепочки

Свойства многих систем, содержащих изолированные цепочки магнитных ионов, не удается описать моделями однородной или альтернированной цепочек. Часто согласие с экспериментом достигается при учете взаимодействия не только с ближайшим соседом $J_{\rm NN}$, но и со следующим за ближайшим соседом в цепочке $J_{\rm NNN}$. Такую систему можно рассматривать как две связанные цепочки или как зигзаговую цепочку. В зависимости от соотношения $J_{\rm NN}/J_{\rm NNN}$ в такой системе могут реализоваться различные основные состояния.

Если знаки $J_{\rm NN}$ и $J_{\rm NNN}$ различные, то обменное взаимодействие является фрустрированным – обмены мешают друг другу.

Зигзаговые магнитные цепочки

Возможные варианты основного состояния:

 $J_{\rm NN} < 4 \; J_{\rm NNN}$ - димеризованное состояние со спиновой щелью

 $J_{\rm NN} < 2 \ J_{\rm NNN}$ - спиральная магнитная структура, в общем случае период ее несоизмерим с периодом решетки

 $J_{\rm NN} = \frac{1}{2} J_{\rm NNN}$ - имеется точное решение квантовомеханической задачи, соответствующее синглетному основному состоянию со щелью

Спиновые лестницы

Модель спиновой лестницы подходит для описания двух сильно связанных цепочек. Она более удобна, чем модель альтернированной цепочки, в случае, если взаимодействия в цепочке и между цепочками не фрустрированные.

```
Взаимодействие в цепочке – «ножка» лестницы J(J_{//})
```

Взаимодействие между цепочками –

- перекладина (ранг) лестницы J' (J_{\perp})

Спиновые лестницы

Модель спиновой лестницы является следующим шагом от одномерных к двумерным системам. В такой модели у каждого иона 3 ближайших соседа (если учитывать взаимодействия только между ближайшими). При $J \rightarrow 0$ спиновая лестница превращается в систему димеров, при $J' \rightarrow 0$ спиновая лестница разделяется на две невзаимодействующие цепочки. Соотношение J и J' определяет тип основного состояния, величину щели и дисперсионное уравнение для магнонов.

Принципиально отличаются спиновые лестницы с четным и нечетным числом ножек.

Спиновые лестницы с нечетным числом ножек

В случае нечетного числа ножек спиновой основное состояние лестницы не обладает щелью В спектре. Это состояние также характеризуется короткодействующими парными корреляциями спинов, но величина корреляции стремится к О увеличении при расстояния ПО степенному закону (при $T \rightarrow 0$).

Система ведет себя как одиночная цепочка.

Спиновые лестницы с четным числом ножек

В случае **четного числа ножек** для всех J' > 0 основное состояние спиновой лестницы – **спиновая жидкость**. Это состояние отделено **щелью** в спектре магнонов от первого возбужденного состояния и характеризуется короткодействующими парными корреляциями спинов (величина корреляции экспоненциально стремится к 0 при увеличении расстояния (при $T \rightarrow 0$)).

Спиновая жидкость может быть представлена как система димеров, расположенных на ранге лестницы, каждый из которых находится под действием некоторого «среднего поля» со стороны всех остальных.

Спиновые лестницы с четным числом ножек

Поведение магнитной восприимчивости и теплоемкости в области низких температур позволяет сделать оценку величины щели для спиновой лестницы со спинами *S*-¹/₂:

$$\chi(T) = \frac{1}{2\sqrt{\pi aT}} e^{-\Delta/T} ,$$

$$C(T) = \frac{3}{4} \left(\frac{\Delta}{\pi a}\right)^{1/2} \left(\frac{T}{\Delta}\right)^{-3/2} \left[1 + \frac{T}{\Delta} + \frac{3}{4} \left(\frac{T}{\Delta}\right)^2\right] e^{-\Delta/T}.$$

Примеры реальных систем, содержащих спиновые лестницы

SrCu₂O₃ – в структуре содержатся слои Cu₂O₃, которые чередуются со слоями Sr. В слое ионы меди в квадратном окружении кислорода формируют спиновые лестницы. Величина спиновой щели **Δ** ~ **400 К**

CaV₂**O**₅, **MgV**₂**O**₅ – в структуре содержатся гофрированные плоскости, образованные пирамидками VO₅. Пирамиды соединены в основании. Ионы V⁴⁺ (S-1/2) формируют спиновые лестницы, с антиферромагнитным обменом и по рангу, и вдоль направляющих. Величина спиновой щели $\Delta \sim 660 \text{ K}$ для CaV₂O₅ и $\Delta \sim 20 \text{ K}$ для MgV₂O₅. Такое различие связано с различным наклоном пирамид \rightarrow различными углами связи V-O-V.

BiCu₂VO₆ – магнитные ионы Cu²⁺ формируют зигзагообразные спиновые лестницы, изолированные друг от друга немагнитными ионами V⁵⁺ и Bi³⁺. В структуре имеется 8 неэквивалентных обменов Cu-O-Cu. Основное состояние является немагнитным и может быть описано 3-мя типами димеров. Величина «средней» щели **Δ** ~ **190 К**.

Примеры реальных систем, содержащих спиновые лестницы SrCu₂O₃

Между соседними лестницами есть слабый 90° FM обмен

Примеры реальных систем, содержащих спиновые лестницы CaV_2O_5 , MgV_2O_5

Наиболее сильное взаимодействие между V⁴⁺, расположенными по одну сторону плоскости - спиновые лестницы с двумя направляющими. 180° AFM обмен вдоль перекладины и вдоль ножки. Между соседними лестницами есть слабый 90° FM обмен.

Примеры реальных систем, содержащих спиновые лестницы BiCu₂VO₆

Cu(5) Cu(3) Cu(2) Cu(1) Cu(4) Cu(6) $J_{3} J_{7} J_{5} J_{4} J_{4} J_{6} J_{7} J_{2} J_{8} J_{3} J_{7} J_{6} J_{6} J_{4} J_{5} J_{2} J_{8} J_{3} b$ Cu(6) Cu(4) Cu(1) Cu(2) Cu(3) Cu(5) Зигзагообразные спиновые лестницы с двумя направляющими вдоль оси *с*, перекладины вдоль оси *b*. Шесть неэквивалентных позиций меди, восемь различных параметров обменного взаимодействия.

Поведение $\chi(T)$ говорит о щели в спектре магнитных возбуждений, но простой моделью поведение системы не описывается.

Можно рассмотреть 3 типа синглетных кластеров (димеров), слабо взаимодействующих между собой.

Спиновые лестницы с двумя и с тремя ножками $SrCu_2O_3$ и $Sr_2Cu_3O_5$

