

Дифракционный эксперимент: оборудование, пробоподготовка, условия съемки

Москва 2011. Курс для 415 группы.

1. Оборудование для регистрации дифрактограмм

- 1.2 Источники излучения
- 1.2 Детекторы
- 1.3 Рентгеновская оптика
- 1.4 Геометрии съемки
- 2. Пробоподготовка
- 3. Условия съемки

Задача регистрации дифрактограмм

Отпаянная рентгеновская трубка (до 3 kW)

90% современных порошковых дифрактометров оборудовано такими трубками

Рентгеновские трубки с вращающимся анодом

Мощность до 30-35 kW (в серийных устройствах – 18 kW)

Основная проблема - поддержание вакуума. При недостаточном вакууме выгорают анод и нить катода!

Характеристическое излучение:

$$I \sim i \times (U - U_o)^n, 1.6 < n < 2$$
 U₀(Cu) ~ 9 кВ

Тормозное излучение (белый спектр):

 $I \sim i imes U^2 Z, Z-$ атомный номер материала анода

Обычный режим работы трубки с Си-анодом: U = 40-45 кВ I = 30-45 мА

Высоковольтный генератор

Современные генераторы – импульсные источники питания + высоковольтный трансформатор + диодный умножитель

1.2 Детекторы (точечные)

Динамический диапазон 0 - 1.5-2 Мимп/с

Недостатки:

- амплитуда импульса зависит от
 - состава газовой смеси

- невысокое временное разрешение

Сцинтилляционный

1. Кристалл-сцинтиллятор

 2. Световод
 3. Фотокатод ФЭУ
 4. Диноды
 5. Анод ФЭУ
 λ = 0.5 - 2.5 Å

 временное разрешение 10⁻⁹ с

 мёртвое время
 10⁻⁸ с
 Эффективность для СuKα≈95%

<u>Кристаллы:</u> NaI(Tl) ZnS(Ag) CsI(Tl)

1.2 Детекторы (точечные)

Твердотельные полупроводниковые детекторы Si(Li)

Детектор	Разрешение (eV)	Разрешение (%) для CuKα
Сцинтилляционный	3638	45.3
Пропорциональный	1086	13.5
Si(Li)	160	2.0

Достоинства:

Высокое энергетическое разрешение

Недостатки:

Малый динамический диапазон (обычно до 10⁵ имп/сек)

PSD (Positional Sensitive Detector)

Газонаполненные PSD

линейный PSD 4-7 °20 изогнутый PSD 40-120 °20

Разрешение PSD-детекторов двух типов:

IPD Systems Imaging Plate Detector

Детекторы типа Image Plate («многоразовая фотопленка»)

+ высокий динамический диапазон (>10⁶) - низкая скорость сканирования

- 1. Засветка PETF|BaFBr:Eu²⁺ рентгеновским излучением
- 2. Проявление: синяя люминесценция при облучении красным лазером
- 3. Стирание: 10 секунд под светом галогеновой лампы.

Детекторы типа Multi-Strip (многоканальные полупроводниковые)

- 1. Ограничение расходимости пучка в двух плоскостях (коллимация)
- 2. Монохроматизация излучения
- Преобразование расходимости пучка (расходящийся/сходящийся/параллельный)
- 4. Уменьшение потерь излучения

Принцип работы основных пассивных оптических элементов

плоский параллельный монохроматор - параллельный пучок

плоский астигматичный монохроматор (по Фанкухену) - сужение пучка

Изогнутый монохроматор – формирует сходящийся пучок

по Иоганну: фокусировка в линию Излучение: Ка_{средн}

по Иогансону: фокусировка в точку Излучение: *К*а₁

Принцип действия вторичного монохроматора

Оптика параллельного пучка (многослойные зеркала)

1. Геометрия Брегга-Брентано

Образец в центре главной фокусирующей окружности

Наиболее употребимые в дифрактометрии геометрии!

Scintag Pad V

Горизонтальные гониометры *ա* - 2*Θ* (вторичный монохроматор)

Вертикальные 0-20 гониометры (вторичный монохроматор, первые энергодисперсионные детекторы): упрощена пробоподготовка, облегчена установка дополнительного оборудования

Scintag Pad X

- Вертикальная θ-θ геометрия
 - Одинаково легко
 выполнять анализ
 порошков и
 массивных образцов
 - Упрощена пробоподготовка
 - Лучшая геометрия
 для модернизации /
 расширения
 возможностей
 прибора
 - Plug & play
 изменение
 конфигурации
 прибора

Дифрактометры с изменяемой геометрией

- Четыре геометрии в одном приборе
- PSD детектор
- Быстрая перенастройка
- Кα1 во всех конфигурациях
- Прецизионное исследование текстуры
- Высоко-/ низкотемпературные эксперименты

1. Геометрия Зеемана-Болина

Образец на главной фокусирующей окружности

2. Пробоподготовка

1. «На отражение»

- Ровная поверхность (кроме параллельного пучка)
- Размер частиц порошка: $\mu d < 1$
- Для кристаллитов правильной формы разбавитель (?)
- Малошумящая подложка
- При необходимости аморфное связующее (цапон-лак)

2. «На просвет»

- Ровная поверхность (кроме параллельного пучка)
- Размер частиц порошка: µd < 1
- Аморфная пленка
- Аморфное связующее (цапон-лак)
- Тонкий слой для оптимальной интенсивности сигнала

3. «Дебая-Шеррера»

- Размер частиц порошка: µd < 1
- Капилляр 0.5 0.1 мм
- Контроль интенсивности сигнала!
- Запаяйте(заклейте) капилляр!

3. Выбор условий съемки

- Оптимальный шаг сканирования ~ 0.1 FWHM
- Расходимость пучка по размеру площади засветки ($S_{\text{beam}} < S_{\text{sample}}$)

- Скорость сканирования по СКО сигнала
 - (N число импульсов, Q скорость счета, t время регистрации в точке)

$$\sigma = \sqrt{N} = \sqrt{Qt}; \ \sigma_{omh} = \frac{\sigma}{N} = \frac{1}{\sqrt{N}} = \frac{1}{\sqrt{Qt}}$$

 Режим работы источника – оптимальный для источника, а затем уже для Вас (80% мощности трубки – это максимум для рутинной работы!)

3. Погрешности измерений

Помните, для reflection:

$$\Delta z = l_{eff} = \frac{1}{2\mu}$$

