Синтез кристаллических фаз из жидкой фазы

Методы синтеза из жидкой фазы:

	ИЗ РАСТВОРА	ИЗ РАСПЛАВА
	(Т _{крист} ~ 20-100°С)	(Т _{крист} > 100°С)
ИЗОТЕРМИЧЕСКИЕ		
- испарение одного из компонентов	+	+
- добавление компонента	+	
- сливание растворов компонентов	+	
НЕИЗОТЕРМИЧЕСКИЕ		
- охлаждение	+	+
- нагревание	+	

Так как процесс кристаллизации в большинстве случаев лимитируется массопереносом, можно использовать фазовые диаграммы для выбора условий (квазиравновесные условия)

Синтез из расплава (раствора в расплаве)

<u>Проблемы:</u>

- высокие температуры \Rightarrow
- требования к материалам (аппаратуре)
- трудность проведения манипуляций
- не все методики применимы

Применение:

1) синтез конгруэнтно плавящихся соединений;

2) синтез кристаллических фаз с заданным отклонением от стехиометрии;

3) «низкотемпературный» синтез тугоплавких и разлагающихся при высоких температурах фаз;

4) получение кристаллов инконгруэнтно плавящихся соединений5) получение твердых веществ в стеклообразном состоянии

Рост кристалла из расплава в однокомпонентной системе

ПРЕИМУЩЕСТВА

1) Рост кристаллов с довольно высокими скоростями, т.к. диффузия не лимитирует скорости кристаллизации.

2) Относительно высокая чистота, т.к. отсутствуют дополнительные компоненты.

Метод Бриджмена-Стокбаргера

Граница кристалл-расплав перемещается перпендикулярно оси тигля за счет программируемого перемещения тигля в температурном градиенте печи

Примеры кристаллов, выращенных по методу Бриджмена

Матернал	Фор- мула	Темпера- тура плавления, °С	Матернал тигля	Градиент	Скорость охлаждения (опускания тигля)	Атмосфера	Примечания
Бромнстое серебро	AgBr	434	Пирекс, кварц	10 °С/см и более	(1-5 мм/ч)	Cl ₂ (промыв- ка HCl или HBr)	Указана степень ак- тивации и т. д. (кварц видимо, лучше пирек- са)
Аргон	Ar	-189,4	Стекло	5 °С/мм	(1мм/мин)	Ar	Поликристаллы диа- метром 4 мм
Золото	Au	960,5	Графит	~5°С/см	«Малая»	N ₂	Монокристаллы дли- ной до 8 мм
Медь	Си	1083,2	Графит	~12 °С/см	(От 5 до ~20 см/ч)	Вакуум	Кикучи-линии свиде- тельствуют о высоком совершенстве
Никель	Ni	1455	Рекристал- лизованная окись Al ₂ O ₃		(0,1—0,2мм/ч)	*	Без затравки (дру- гие варианты см. в [106], другие легко- плавкие вещества при- ведены в [107])
-Литий	Li	179	Сталь, не- ржавеющая сталь		2—30 °С/ч	Ar	
Флюорит	CaF ₂	1392	Ta, Fe или Ni	Не приведен	(10 мм/ч)	Вакуум	Специальная мето- дика удаления СаО

Недостаток:

невозможность выращивания кристаллов, значительно расширяющихся при кристаллизации, например, простых полупроводниковых кристаллов: $\Delta V/V \sim 2-3\%$.

Метод Чохральского и аналогичные методы

Устраняет механическое влияние тигля на растущий кристалл. Широко применяется для выращивания полупроводниковых материалов. Возможность строгого контроля за условиями роста.

Контроль монокристалличности

Факторы, влияющие на кристаллизацию

ТЕМПЕРАТУРНЫЙ ГРАДИЕНТ

СКОРОСТЬ ВЫТЯГИВАНИЯ (обычно от 10 мм/ч до 10-15 см/ч). Многокомпонентные системы: ~ 10 мкм/ч. Дендриты и дендритные ленты: ~ 1-10 см/мин

СКОРОСТЬ ВРАЩЕНИЯ (обычно от 1 до 100 оборотов/мин).

Для перемешивания и усреднения радиальной асимметрии теплового поля

Потоки жидкости при перемешивании

Распределение температуры при различных скоростях роста

Кристаллы, полученные методом Чохральского и Киропулоса

Материал	Формула	Темпе- ратура плавле- ния, °С	Материал тигля	Скорость вытягивания	Направление роста	Атмосфе- ра	Примечание
-	1						
Германий	Ge	937			1.1.1	2 Carlos	См. текст
Кремний	Si	1412					» »
Цинк	Zn	419	Пирекс	1,2 см/мин	Различные	N ₂	Кристаллы 2,7 мм в диаметре, охлаждают- ся на воздухе
Арсенид галлия	GaAs	1240	Плавленый кварц		*	As	Избыточное давле- ние As
Хлорид калия	КСI	770	Рt или фарфор			Воздух	Метод Киропулоса; используется охлаж- даемая воздухом за- травка, погружаемая в расплав; выращивают- ся и другие щелочно- галоидные соединения
Вода	H ₂ O	0	Стекло			»	Метод Киропулоса, диаметр 9 см, высота 6 см
Вольфрамат каль- ция	CaWO ₄	1535	Rh	0,5—2 см/ч	»	»	См. текст
Ниобат лития	LiNbO ₃	1260	Pt	0,5—2 см/ч	»	»	» »
Сапфир	Al_2O_3	2050	' Ir	0,5-2 см/ч	»	»	» »
Иттрий-алюми- ниевый гранат	Y ₃ Al ₅ O ₁₂	~1900	Ir	0,5—2 см/ч	»	»	» »

Другие методы выращивания из расплава

ЗОННАЯ ПЛАВКА

Кристалл Лодочка Затравка ->Расплав AAA 444 -Нагреватель

БЕСТИГЕЛЬНЫЕ МЕТОДЫ

Бесконтактный нагрев:

индукционный, электронно-лучевой, радиационный нагрев от нагревателей сопротивления, фокусирование источника лучистой энергии

1. МЕТОД ПЛАВАЮЩЕЙ ЗОНЫ

 $\subset \mathcal{I}$ Кристалл Нагреватель Расплав Затравка

10

Кристаллы, полученные методами зонной плавки и плавающей зоны

Материал	Темпера- тура плавления, °С	Лодочка	Скорость движения зоны	Примечания
Германий	942	Плавленый кварц, покры- тый графитом	0,1—5 см/ч	
Германий	942	То же	∼0,1 см/ч	Отражате- ли и малая скорость ро- ста улучша- ют качество
Арсенид галлия	1240	Плавленый кварц или окись крем- ния, покры- тые пироли- тическим гра- фитом	1,25—5 см/ч	Плотность дислокаций ∼100 см ⁻²
Вольфрам	3370	Медный ре- актор, охлаж- даемый во- дой, и плаваю- щая зона	0,2—4 см/мин	Электроду- говое и элек- тронно-луче- вое плавле- ние

1

Бестигельные методы

2. Электронно-лучевое плавление

3. Пламенное плавление (метод Вернейля)

Бестигельные методы

 Радиационный нагрев, плазменный нагрев, световой нагрев
 (модифицированные методы Вернейля)

5. Метод дифференциального вытягивания

Энергия, обеспечивающая плавление Исходный материал

Затравка

Метод светового нагрева с дуговым источником света

Некоторые кристаллы, выращенные методом Вернейля

и методом светового нагрева

Матернал	Формула	Темпера- тура плавления, °С	Примечания
Корунд, сапфир	Al ₂ O ₃	2040	В разных направле- ниях; луч-
Рубин	A1 ₂ O ₃ : Cr		ше всего под углом 60° к оси с Метод
Магний-алюминиевая шпинель	MgAl ₂ O ₄	2130	Вернейля То же
Муллит Шеелит Рутил	3Al ₂ O ₃ • 2SiO ₂ CaWO ₄ TiO ₂	1810 . 1530 1830	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Окись циркония Окись иттрия Магнезиальная (несте-	ZrO_2 Y_2O_3 $MgFe_2O_4$	2700 2400 Выше 1200	» » » » Метол
хиометричная) шпи- нель Никелевый феррит	NiFe ₂ O ₄	Выше 1200	светового нагрева То же

Выращивание кристаллов из растворов в расплавах

1) Растворение исходных компонентов в подходящем растворителе (расплаве соли или металлическом флюсе).

2) Медленное охлаждение, как правило, спонтанная кристаллизация.

3) Удаление растворителя (флюса) декантацией или выщелачиванием растворителем, избирательно растворяющим флюс.

Подбор расплава-растворителя (флюса)

Требования:

 растворитель и растворённое вещество образуют простую эвтектическую систему (неограниченная растворимость в жидкой фазе, отсутствие соединений и твёрдых растворов);
 максимальная растворимость продукта (10-50%) протяженная линия ликвидуса, низкая Т эвтектики;
 Необходим заметный температурный коэффициент растворимости (~ 1 вес.%/10°);

4) минимальная растворимость в кристаллическом продукте;

- 5) отсутствие промежуточных соединений;
- 6) малая вязкость (<10 сантипуаз);
- 7) низкое давление насыщенного пара;
- 8) возможность селективной отмывки

Дополнительные критерии выбора флюса

✓ «Подобное растворяется в подобном»: сходство в характере связей

 ✓Катионы растворителя и растворённого вещества совпадают или же их радиусы должны максимально различаться

✓Чем ближе значения Z/R катионов растворителя и вещества, тем выше растворимость (Z и R – окислительное число и радиус катиона)

✓Чем интенсивнее хим. взаимодействие между частицами растворителя и растворённого вещества тем выше растворимость

 ✓Катионы растворителя и растворённого вещества должны максимально различаться по поляризуемости и поляризующему действию («мягкие – жёсткие»).

НАИБОЛЕЕ ЧАСТО ИСПОЛЬЗУЕМЫЕ ФЛЮСЫ:

PbO, PbF2, Bi2O3, KF, B2O3, Na2B4O7, Na3AIF6, хлориды, фториды, сульфаты, фосфаты карбонаты молибдаты, вольфраматы и ванадаты щелочных металлов

	При	меры испо	ользования растворителей
PbO	888	1310-800	MeFe ₂ O ₄ PbFe ₁₂ O ₁₉ MeAl ₂ O ₄ AI ₂ O ₃ LaAlO ₃
			MgSiO ₄ PbTiO ₃ Pb ₃ CdNb ₂ O ₉ LiFe ₅ O ₈ EuFcO ₃
$PbO-B_2O_3$	<600	1100-700	Y ₃ Fe ₅ O ₁₂ MeFe ₂ O ₄ PbTiO ₃ LiFc ₅ O ₈ Yb ₃ Ga ₅ O ₁₂
PbF ₂	820	1290-800	Y ₃ Al ₅ O ₁₂ FeBO ₃ NiO MgO HfO ₂ GdMn0 ₃
			$MeFe_2O_4 AI_2O_3 CoMn_2O_4$
PbO-PbF ₂	<700	1240-900	Y ₃ Fe ₅ O ₁₂ Sm ₃ Ga ₅ O ₁₂ LiFe ₅ O ₈ LaAlO ₃ MeFe ₂ O ₄
			$Sc_2O_3Yb_3Ga_5O_{12}$
PbO-PbF ₂ -B ₃ O ₃	<600	1300-900	$Y_{3}Fe_{5}O_{12}, Y_{3}A1_{5}O_{12}$. LaMn O_{3} , FeBO ₃ , PbAl ₁₂ O ₁₉
PbO-Bi ₂ O ₃	650	1260-950	$LaCrO_3 Bi_{3-2x}Ca_{2x}Fe_{5-x}V_xO_{12}$, $MeFe_2O_4$
$Pb_3(PO_4)_a$	1020	1150-980	PbTiO ₃ , PbZrO ₃ , MeFe ₂ O ₄ , LaPO ₄
PbMoO ₄	1068	1200-1030	$MeFe_{2}O_{4} FeBO_{3} \alpha - Fe_{2}O_{3}, Be_{3}AI_{2}Si_{6}O_{18}$
Bi ₂ O ₃	820	1200-800	LiFe ₅ O ₈ , MeFe ₂ O ₄ , BiTiO ₃ , Bi ₁₂ TiO ₂₀
Bi ₂ O ₃ -B ₂ O ₃	<700	1100-650	MeFe ₂ O ₄ , FeBO ₃ , GaFeO ₃ , GdA10 ₃ , NiMnO ₄
Bi ₂ O ₃ -PbF ₂		1300	Cr_2O_3 , ThO ₂ , Bi _{3-2x} Ca _{2x} Fe _{5-x} V _x O ₁₂ , Ga ₂ O ₃
LiF	842	1100-800	LiFePO ₄ , BaF ₂ , LiBaF ₃ , LiFeO ₂
$Li_4V_2O_7$	575	1100-800	LiFe ₅ O ₈ , MeFe ₂ O ₄
LiBO ₂	845	1100-800	aFe ₂ O ₃ , LiFeO ₂ , LiFe ₅ O ₈ , Cr ₂ O ₃ 18

Li ₂ Mo ₂ O ₇	600	1000—550	Y ₂ SiO ₅ TiO ₂ Be ₃ Al ₂ Si ₆ O ₁₈ , Er ₂ SiO ₅ , BeO
NaVO ₃	630	1100—600	$MeFe_{2}O_{4} YVO_{4} Na_{3}Sc_{2}V_{3}O_{12}$
NaF	995	1250—950	BaTiO ₃ MeFe ₂ O ₄ NaNbO ₃
Na ₂ WO ₄	698	1200—650	$Al_2O_3 SiO_2 \alpha$ - $Fe_2O_3 ZnCr_2O_4 Y_3Fe_5O_{12} NiWO_4 Na_xWO_3$
$Na_2W_2O_7$	730	1250—700	Ca(Sr,Ba)WO ₄ , MnWO ₄ MnCr ₂ O ₄ MeFe ₂ O ₄ FeWO ₄
$Na_2B_4O_7$	741	1150-700	α-Fe ₂ O ₃ Al ₂ O ₃ BeO TiO ₂ MgFeBO ₄ YVO ₄ , MeFe ₂ O ₄
Na ₄ P ₂ O ₇	995	1250—950	$MeFe_2O_4 ThO_2 \alpha - Fe_2O_3$
Na ₂ Mo ₂ O ₇	612	1100—550	$MeFe_2O_4 Sr_2MoO_4 ThSiO_4$
KF	856	1000—800	BaTiO ₃ , CeO ₂ , KNbO ₃ , Li ₂ SiO ₃ , K ₂ MgF ₄ CuO CeAlO ₃
KPO ₃	790	1100—720	$MeFe_2O_4$, α - Fe_2O_3
KBO ₂	950	1100—900	LaFeO ₃ , CdTiO ₃
$K_2B_4O_7$	815	1000—750	Cr_2O_3 , TiO_2 , α -Fe ₂ O ₃
K ₂ MoO ₄	920	1150—800	$LaCr_3(BO_3)_4$, TiO ₂
K ₂ Mo ₃ O ₁₀	<550	1370—1100	$YA1_3(BO_3)_4 LaCr_3(BO_3)_4$
BaCl ₂	962	1250—900	BaTiO ₃ BaWO ₄ BaCoWO ₆ BaPbO ₃
	0.1.0		

Рост кристаллов из растворов в расплаве

Иттрий-железистый гранат (ИЖГ) Y₃Fe₅O₁₂

Иттрий-железистый гранат (ИЖГ) Y₃Fe₅O₁₂

ВЫБОР ФЛЮСА:

- PbO, Fe₂O₃/Y₂O₃≈12.6 недостатки: инконгруэнтное растворение, высокая вязкость раствора, летучесть PbO
 PbO+PbF₂
- 3. BaO-0.6B₂O₃ -

Конгруэнтное растворение!

4. Оптимальный состав (добавки Са²⁺ уменьшают число зародышей:

$$Y_2O_3 - 1694$$
 г
 $Fe_2O_3 - 2397$ г
CaO - 4 г
PbO - 6021 г
PbF_2 - 4926 г
B_2O_3 - 279 г

Иттрий-алюминиевый гранат, активированный неодимом Y₃Al₅O₁₂:Nd $Y_2O_3 - 720$ г Al_2O_3 - 1220 г Nd_2O_3 - 253 г PbO - 3556 г PbF_2 - 4346 г B_2O_3 - 279 г

Типичные кристаллы, выращенные из раствора в расплаве солей

Соединение	Формула	Растворитель	Метод	Условия	Примечания
Иттрий-же- лезистый гра- нат (ИЖГ)	Y ₃ Fe ₅ O ₁₂	РЪО	Медленное охлаждение	Установить равнове- сие при 1370 °С; охла- ждать со скоростью 1—5 °С/ч	Кристаллы размером до нескольких санти- метров; первым кри- сталлизуется магнето- плюмбит, Y можно за- менить другими ред- кими землями; см. разд. 3 и 4 о других методах
Титанат ба- рия	BaTiO₃	ΚF	Испарение и охлаж- дение	Установить равнове- сие при 1200 °С; охла- ждать со скоростью 20—40 °С/ч до ~850 °С, слить рас- плав; промыть H ₂ O	Пересыщение ча- стично обусловлено ис- парением КГ; двойни- ки типа «бабочка»
Титанат ба- рия	BaTiO ₃	TiO ₂	Вытягива- ние из расплава ¹)	ТіО ₂ /ВаО > 1 в рас- плаве	Рост на затравках, наросший слой толщи- ной до нескольких см
Иттрий-алю- миниевый гра- нат (ИАГ)	Y ₃ Al ₅ O ₁₂	PbO—PbF2	Медленное охлаждение	Установить равнове- сие при 1150 °C; охла- ждать со скоростью 4—5 °C/ч до 750 °C	Кристаллы размером несколько см; см. гл. 5, разд. 4 о выращива- нии методом Чохраль- ского
Сапфир или окись галлия	Al_2O_3 Ga_2O_3	PbF ₂	То же	Установить равнове- сие при 1200 °C; охла- ждать до 900 °C со скоростью 3 °C/ч	Пластинки размером до 1 см; метод приме- ним для крайних чле- нов; приводит к обра-

Новые сверхпроводники: ферропниктиды и феррохалькогениды

2006, Y. Kamihara *et al*, JACS 128, 10012, LaFePO, T_c=5 K

2007, T. Watanabe *et al*, Inorg. Chem 46, 7719, LaNiPO, $T_c=3$ K

2008, Y. Kamihara *et al*, JACS 130, 3297, **LaFeAsO_{1-x}F_x**,T_c=26 K

Группа проф.

H. Hosono, Tokio Institute of Technology

SmFeAsO_{1-x}F_x, T_c=55 K La_{1-x}Sr_xFeAsO, T_c=25K SmFeAsO_{1-x}, T_c=55 K Ba_{1-x}K_xFe₂As₂, T_c=38 K Li_xFeAs, T_c=18 K Fe(Se_{1-x}Te_x)_{0.82}, T_c=14 K Sr_{1-x}La_xFFeAs, T_c=36 K FeSe_{0.82}, Tc= 8 K (27 К при 1.48 GPa)

Синтез сверхпроводников на основе FeAs в виде монокристаллов

LnFeAsO_{1-x}F_x, T_c=26-56 K (Ba,K)Fe₂As₂, T_c=38 K

LiFeAs, T_c=18 K

ZrCuSiAs, *P4/nmm*, a=4.0355 Å, c=8.7393 Å

ThCr2Si2, *I4/mmm*, a=3.9625, c=13.017

PbFCl, *P4/nmm*, a=3.7914, c=6.364 Å

Выращивание монокристаллов LnFeAsO_{1-x} F_x , x = 0.6-0.8 (Ln=La, Pr, Nd, Sm, Gd)

Смесь прекурсора (LnFeAsO_{1-x}F_x,) и флюса (NaCl/KCl) в мольном соотношении от 1:1 до 1:3 прессовывали в виде таблеток и нагревали до Т **1350-1450°C** в тигле из **BN** под давлением **30 кбар**. Монокристаллы отделяли от **NaCl/KCl** флюса промыванием водой.

Изменяемые параметры: температура отжига, давление, длительность отжига, скорость нагревания и охлаждения.

Монокристаллы в виде пластин с размерами 0.150-0.300 мм и температурой перехода Тс≈53 К. кристаллизацией из раствора в расплаве NaCl/KCl (30кбар, 1380 °C, 60-85 ч)

Проблемы: 1) С увеличением времени отжига содержание примесей, напр., FeAs, возрастает. 2) Высокая скорость нуклеации (зародышеобразования) препятствует образованию более крупных кристаллов правильной формы.

Выращивание кристаллов 122 из жидкого олова

Sn – практически, единственный металл, заметно растворяющий Fe и не образующий прочных соединений.

Выбор температуры декантации Sn-расплава

Схема печи для выращивания монокристаллов $A_{1-x}K_xFe_2As_2$ (A=Ba, Sr) с использованием флюсов (как Sn, так и FeAs). Можно видеть, что крупные монокристаллы преимущественно растут на дне тигля.

Микрофотографии монокристаллов $SrFe_2As_2$ и $Ba_{0.72}K_{0.28}Fe_2As_2$

(a) $SrFe_2As_2$ с полислоистой структурой, (б) отслоившийся монокристалл $Ba_{0.72}K_{0.28}Fe_2As_2$, (c) макроступени на (001) поверхности $Ba_{0.72}K_{0.28}Fe_{2}As_{2}$ (d) то же с большим увеличением, (е) прерывание ступеней роста на поверхности SrFe₂As₂, стрелки показывают блокирование ступеней роста частицами примеси Sn, (f) включения Sn, протяженные в плоскости (001) из кристалла SrFe₂As₂. Вставка - увеличенная часть этого же кристалла. Кристаллы были выращены из расплава в жидком олове

монокристаллы LiFeAs

Размеры: (0.3-2)× (0.3-2)×(0.01-0.08) мм3

Анализ 8 кристаллов: Fe/As = 1.08±0.03, Sn/As = 0.015±0.08 Выращивание монокристаллов 122 (AE_{1-x}A_xFe₂As₂, AE=Sr, Ba, A=K, Rb, Cs) методом "self flux"

Предполагаемый квазибинарный разрез BaFe₂As₂-FeAs

Выращивание монокристаллов 111 (AFeAs, A=Li, Na) методом self flux

Сечение фазовой диаграммы системы Li-Fe-As при 800°С. Черными кружками показаны однофазные области, закрашенными на половину – двухфазные, белыми – трехфазные: a) LiFeAs + Li₃As+LiAs, b) LiFeAs + FeAs -+ LiAs, c) LiFeAs + FeAs + Fe₂As, d) LiFeAs + Fe₂As + Fe, e) LiFeAs + Li₃As + Fe.

Фазовая диаграмма системы Li-Fe-As при 800°C

35

Монокристалл LiFeAs, полученный кристаллизацией из расплава Li:Fe:As=2:1:2 (метод self-flux)

